

Diffusers - Sub Section Contents

Ceiling Round Adjustable	79 - 89D
Barrel/Jet/Floor/Eyelash	91 - 112D
Ceiling Swirl	113 - 140D
Ceiling Multi Pattern	141 - 172D
Ceiling Square Face Round Neck	173 - 184D
Ceiling Perforated	185 - 200D

CRA	Ceiling Round Adjustable	80 - 81D
CRA-T	Ceiling Round Adjustable - Thermal	80 - 81D
CRP	Ceiling Round Adjustable - Plaque	82 - 83D
CRP-T	Ceiling Round Adjustable - Plaque - Thermal	82 - 83D
ECO-A	Environmental Ceiling Outlet - Automatic	85 - 88D
ECO-M	Environmental Ceiling Outlet - Manual	84 & 88D
Ordering Key	& Specifications	89D

- Round adjustable
- Louver face and plaque type variable volume diffuser
- Multi cone circular
- Ceiling thermal diffuser

- Aluminium spun construction UV stabilised and fire rated polymer construction
- Full range of air distribution patterns

CRA — Ceiling Round Adjustable Diffuser

Model: CRA

Adjustable Supply Air Pattern, from Horizontal to Vertical Projection.

Manual, or Automatic adjustment via a Thermal Power Pill.

The CRA diffuser is an adjustable supply air pattern diffuser that offers architecturally appealing styling with superior ceiling effect, over standard round ceiling diffusers, to offer excellent diffusion efficiency and flexibility. All of the diffusers in the CRA range have three cones to maintain a uniformity of appearance. In standard form the diffuser is manually adjustable to change the supply air pattern from horizontal for cooling to a vertical discharge for heating. The adjustment is made by turning the small centre cone to provide horizontal throw in the down position and vertical throw in the up position.

The radial supply air pattern and slim flange of the CRA means the diffuser achieves a better ceiling effect than standard round ceiling diffusers. This makes the diffuser suitable for variable air volume applications. The radial supply air pattern also means that the diffuser still delivers the air horizontally even when there is no ceiling present, making it ideal for use with exposed duct systems.

Model: CRA-T

The CRA can also be supplied with the ability to change the supply air pattern automatically. This is coded CRA-T. In this form the diffuser will throw air horizontally with a supply air temperature below 24°C and air with a temperature above 28°C will be thrown vertically. This is achieved with a thermal power pill. No wiring is required¹.

Installation

The CRA comes complete with a patented installation system, of spun aluminium construction, designed to provide a perfect finish irrespective of the ceiling design. Each size of diffuser has a complimentary mounting plate that has been designed to fix the diffuser in solid ceilings, suspended ceiling tiles and in the case where no ceiling is present, exposed duct arrangements.

Construction

CRA diffusers are constructed from aluminium spinnings supported by aluminium arms holding the screw thread adjustment mechanism.

Features

- · Compact flange for superior ceiling effect.
- Adjustable supply air pattern, for Horizontal, or Vertical projection.
- Installation mounting plate.
- Spun aluminium construction.
- Automatic thermal option.
- · Suitable for use with exposed duct installations.

CRA Size	Weight in Kg
200	1.1
250	1.25
300	1.8
350	2.15
400	2.8
CRA-T	8.0 bbA

Notes

- Thermal power pill on CRA-T versions extends 230mm above the assembly and suitable clearance is required.
- 2. Seismic restraints required, but not supplied.

	CRA														
Nominal Duct Size	A	В	С	D	E	F	G	H							
200	195	187	387	8	335	27	88	230							
250	245	237	463	8	410	27	88	230							
300	295	287	552	10	490	41	91	230							
350	345	337	600	10	545	41	91	230							
400	395	387	650	10	585	41	91	230							

Performance Data – CRA

Model: CRA

	Flow Rate (I/s)	50	75	100	125	150	175	200	225
	Neck Velocity (m/s)	1.84	2.76	3.68	4.60	5.52	6.44	7.36	8.28
Nominal	Velocity Pressure (Pa)	2	5	7	12	20	25	32	40
Duct Size	Total Pressure (Pa)	12	17	24	30	38	43	50	55
200mm	Throw (m) @ 0.75 m/s	1	1.5	1.8	2.3	2.6	2.8	3	3.5
Diameter	Throw (m) @ 0.50 m/s	1.2	2	2.3	2.7	3	3.3	3.5	3.8
	Throw (m) @ 0.25 m/s	2	2.5	2.8	3.2	3.5	3.8	4.2	4.8
	NC	17	20	25	30	35	38	42	45
	Flow Rate (I/s)	100	125	150	175	200	225	250	275
	Neck Velocity (m/s)	2.29	2.86	3.43	4.00	4.57	5.15	5.72	6.29
Nominal	Velocity Pressure (Pa)	4	5	8	10	11	14	16	18
Duct Size	Total Pressure (Pa)	10	20	28	40	50	60	68	75
250mm	Throw (m) @ 0.75 m/s	1.5	1.8	2.4	2.8	3.0	3.2	3.4	3.5
Diameter	Throw (m) @ 0.50 m/s	2.3	2.5	2.8	3.3	3.4	3.8	4.2	4.3
	Throw (m) @ 0.25 m/s	3.0	3.3	3.4	3.8	3.9	4.5	4.8	4.9
	NC	20	22	25	29	32	34	37	40
	Flow Rate (I/s)	150	175	200	225	250	300	325	350
	Neck Velocity (m/s)	2.34	2.73	3.11	3.50	3.89	4.67	5.06	5.45
Nominal	Velocity Pressure (Pa)	3	6	7	10	12	15	18	20
Duct Size	Total Pressure (Pa)	12	18	22	30	35	50	60	70
300mm	Throw (m) @ 0.75 m/s	2.2	2.8	3.1	3.5	4.0	4.2	4.3	4.5
Diameter	Throw (m) @ 0.50 m/s	3.2	3.8	3.9	4.0	4.2	5.0	5.2	5.5
Diameter	Throw (m) @ 0.25 m/s	4.2	4.5	4.7	4.8	4.9	6.0	6.1	6.2
	NC	22	25	27	30	32	34	35	37
	Flow Rate (I/s)	200	225	250	275	300	325	350	375
	Neck Velocity (m/s)	2.26	2.54	2.82	3.10	3.39	3.67	3.95	4.23
Nominal	Velocity Pressure (Pa)	2	3	4	6	7	8	10	11
Duct Size	Total Pressure (Pa)	10	17	22	25	28	32	39	45
350mm	Throw (m) @ 0.75 m/s	2.0	2.2	2.5	2.6	2.8	3.0	3.2	3.3
Diameter	Throw (m) @ 0.50 m/s	2.5	2.8	3.2	3.4	3.6	3.8	3.9	4.0
	Throw (m) @ 0.25 m/s	3.4	3.7	4.0	4.2	4.3	4.5	4.7	4.9
	NC	21	22	24	25	27	30	32	34
	Flow Rate (I/s)	275	300	325	350	375	400	425	450
	Neck Velocity (m/s)	2.35	2.56	2.78	2.99	3.21	3.42	3.63	3.85
Nominal	Velocity Pressure (Pa)	3	5	6	6.5	7	8	9	10
Duct Size	Total Pressure (Pa)	10	16	20	24	26	28	30	32
400mm	Throw (m) @ 0.75 m/s	2.2	2.3	2.6	2.8	2.9	3.2	3.4	3.5
Diameter	Throw (m) @ 0.50 m/s	3.0	3.4	3.5	3.7	3.9	4.0	4.2	4.3
Diameter	Throw (m) @ 0.25 m/s	4.0	4.2	4.5	4.8	5.1	5.3	5.4	5.5
	NC	20	22	24	26	27	28	29	30

Notes on Performance Data

- 1. All pressures are in Pascals.
- 2. Minimum radii of diffusion are to a terminal velocity (Vt) of 0.75 m/s and maximum to 0.25 m/s. If diffuser is mounted on an exposed round duct, multiply radii of diffusions shown by 0.70.
- 3. The NC values are based on a room absorption of 8dB re 10^{-12} Watts.
- 4. For effect of dampering see page 12A, table 9.

5. Performance data shown is for the diffuser with cones in the 'down' position for horizontal throw. Performance for the cones in the 'up' position for vertical downwards throw, can be approximated by the use of the following factors:

Total Pressure	X 1.6
Radii of Diffusion	X 0.9
NC	+ 5

CRP- Ceiling Round Adjustable Plaque Diffuser

Model: CRP

Adjustable Supply Air Pattern, from Horizontal to Vertical Projection.

Manual, or Automatic adjustment via a Thermal Power Pill.

The CRP diffuser is an adjustable supply air plaque diffuser that offers an alternative appearance to the CRA range with visually appealing styling and a strong ceiling effect. All of the diffusers in the CRP range have a circular plaque core to maintain a uniformity of appearance. In standard form the diffuser is manually adjustable to change the supply air pattern from horizontal for cooling to vertical discharge for heating. The adjustment is made by turning the circular plaque core centre to provide horizontal throw in the down position and vertical throw in the up position.

The radial supply air pattern and slim flange of the CRP means the diffuser achieves an excellent ceiling effect. This makes the diffuser suitable for variable air volume applications.

CRA - Ceiling Round Adjustable Plaque

Model: CRP-T

The CRP can also be supplied with the ability to change the supply air pattern automatically. This is coded CRP-T. In this form the diffuser will throw air horizontally with a supply air temperature below 24°C and air with a temperature above 28°C will be thrown vertically. This is achieved with a thermal power pill. No wiring is required¹.

Installation

The CRP comes complete with a patented installation system, of spun aluminium construction, designed to provide a perfect finish irrespective of the ceiling design. Each size of diffuser has a complimentary mounting plate that has been designed to fix the diffuser in solid ceilings, suspended ceiling tiles and in the case where no ceiling is present, exposed duct arrangements.

Construction

CRP diffusers are constructed from aluminium spinnings supported by aluminium arms holding the screw thread adjustment mechanism.

Features

- Compact flange for superior ceiling effect.
- Adjustable Supply Air pattern Plaque, for Horizontal, or Vertical Projection.
- Installation mounting plate.
- Spun aluminium construction.
- Automatic thermal option.
- Suitable for use with exposed duct installations.

CRP Size	Weight in Kg
200	1.1
250	1.25
300	1.8
350	2.15
400	2.8
CRP - T	8.0 Add

Notes

- Thermal power pill on CRP-T versions extends 230mm above the assembly and suitable clearance is required.
- 2. Seismic restraints required, but not supplied.

CRP														
A	В	C	D	E	F	G	Н							
195	187	387	8	335	27	88	230							
245	237	463	8	410	27	88	230							
295	287	552	10	490	41	91	230							
345	337	600	10	545	41	91	230							
395	387	650	10	585	41	91	230							
	195 245 295 345	195 187 245 237 295 287 345 337	A B C 195 187 387 245 237 463 295 287 552 345 337 600	A B C D 195 187 387 8 245 237 463 8 295 287 552 10 345 337 600 10	A B C D E 195 187 387 8 335 245 237 463 8 410 295 287 552 10 490 345 337 600 10 545	A B C D E F 195 187 387 8 335 27 245 237 463 8 410 27 295 287 552 10 490 41 345 337 600 10 545 41	195 187 387 8 335 27 88 245 237 463 8 410 27 88 295 287 552 10 490 41 91 345 337 600 10 545 41 91							

Performance Data – CRP

Model: CRP

	Flow Rate (I/s)	50	75	100	125	150	175	200
	Neck Velocity (m/s)	1.84	2.76	3.68	4.60	5.52	6.44	7.36
Nominal	Velocity Pressure (Pa)	2	5	7	12	20	25	32
Duct Size	Total Pressure (Pa)	17	24	30	38	43	50	55
200mm	Throw (m) @ 0.75 m/s	1.5	1.8	2.3	2.6	2.8	3.0	3.5
Diameter	Throw (m) @ 0.50 m/s	2.0	2.3	2.7	3.0	3.3	3.5	3.8
	Throw (m) @ 0.25 m/s	2.5	2.8	3.2	3.5	3.8	4.2	4.8
	NC	20	26	30	35	38	42	45
	Flow Rate (I/s)	100	125	150	175	200	225	250
	Neck Velocity (m/s)	2.29	2.86	3.43	4.00	4.57	5.15	5.72
Nominal	Velocity Pressure (Pa)	4	5	8	10	11	14	16
Duct Size	Total Pressure (Pa)	20	28	40	50	60	68	75
250mm	Throw (m) @ 0.75 m/s	1.8	2.4	2.8	3.0	3.2	3.4	3.5
Diameter	Throw (m) @ 0.50 m/s	2.5	2.8	3.3	3.4	3.8	4.2	4.3
	Throw (m) @ 0.25 m/s	3.3	3.4	3.8	3.9	4.5	4.8	4.9
	NC	22	25	29	32	34	37	40
	Flow Rate (I/s)	150	175	200	225	250	300	325
	Neck Velocity (m/s)	2.34	2.73	3.11	3.50	3.89	4.67	5.06
Nominal	Velocity Pressure (Pa)	3	6	7	10	12	15	18
Duct Size	Total Pressure (Pa)	18	22	30	35	50	60	70
300mm	Throw (m) @ 0.75 m/s	2.8	3.1	3.1	4.0	4.2	4.3	4.5
Diameter	Throw (m) @ 0.50 m/s	3.8	3.9	4.0	4.2	5.0	5.2	5.5
Diamotor	Throw (m) @ 0.25 m/s	4.5	4.7	4.7	4.9	6.0	6.1	6.2
	NC	25	27	30	32	34	35	37
	Flow Rate (I/s)	200	225	250	275	300	325	350
	Neck Velocity (m/s)	2.26	2.54	2.82	3.10	3.39	3.67	3.95
Nominal	Velocity Pressure (Pa)	2	3	4	6	7	8	10
Duct Size	Total Pressure (Pa)	17	22	25	28	32	39	45
350mm	Throw (m) @ 0.75 m/s	2.2	2.5	2.6	2.8	3.0	3.2	3.3
Diameter	Throw (m) @ 0.50 m/s	2.8	3.2	3.4	3.6	3.8	3.9	4.0
	Throw (m) @ 0.25 m/s	3.7	4.0	4.2	4.3	4.5	4.7	4.9
	NC	22	24	25	27	30	32	34
	Flow Rate (I/s)	275	300	325	350	375	400	425
	Neck Velocity (m/s)	2.35	2.56	2.78	2.99	3.21	3.42	3.63
Nominal	Velocity Pressure (Pa)	3	5	6	6.5	7	8	9
Duct Size	Total Pressure (Pa)	16	20	24	26	28	30	32
400mm	Throw (m) @ 0.75 m/s	2.3	2.6	2.8	2.9	3.2	3.4	3.5
Diameter	Throw (m) @ 0.50 m/s	3.4	3.5	3.7	3.9	4.0	4.2	4.3
	Throw (m) @ 0.25 m/s	4.2	4.5 24	4.8 26	5.1 27	5.3	5.4	5.5
	NC NC					28	29	30

Notes on Performance Data

- 1. All pressures are in Pascals.
- 2. Minimum radii of diffusion are to a terminal velocity (Vt) of 0.75 m/s and maximum to 0.25 m/s. If diffuser is mounted on an exposed round duct, multiply radii of diffusions shown by 0.70.
- 3. The NC values are based on a room absorption of 8dB re 10^{-12} Watts.
- 4. For effect of dampering see page 12A, table 9.

5. Performance data shown is for the diffuser with cones in the 'down' position for horizontal throw. Performance for the cones in the 'up' position for vertical downwards throw, can be approximated by the use of the following factors:

Total Pressure	X 1.6
Radii of Diffusion	X 0.9
NC	+ 5

ECO - M - Environmental Ceiling Outlet

Model: ECO-Manual

Description

The ECO Manual Diffuser is a supply or return air diffuser made from an Engineering Polymer. It has a simple, visually appealing style that is suitable in commercial and domestic buildings alike. The central diffusion cone of the ECO can be adjusted up or down by hand to control the air volume being supplied. For 'shut off' the cone can be adjusted fully home to stop the air supply completely.

Performance

The radial supply air pattern of the ECO Manual creates a strong ceiling effect resulting in a draft-less environment. The strong ceiling effect allows it to be used in Variable Air Volume applications.

Installation

The ECO Manual is very easy to install. A hole is created in the ceiling using the supplied template. The ECO can then be offered up to the ceiling and the ducting attached. The neck of the ECO is then inserted through the hole in the ceiling enabling the four retaining legs to snap over retaining the ECO tightly on the ceiling. The ECO can be mounted into both solid and suspended ceilings with little fuss using the automatic snap over retaining legs. NOTE: Seismic restraints required, but not supplied.

Retrofit Installation

The ECO Manual fits into the same sized hole as other similar types of diffuser. In addition the slightly larger diameter outer flange covers any imperfections in the ceiling finish that may have been left when the original diffuser was removed.

Construction and Finish

The ECO is constructed of a tough UV stabilised and fire rated engineering polymer. The colour of the ECO is White. All visible surfaces have a textured finish.

Model: ECO - M Horizontal Radial Throw (Isothermal Air).

ЕСО-М	A (mm)	B (mm)	C (mm)	D (mm)	Weight (kg)
150	147	100	269	240 ± 5	0.8
200	197	100	319	290 ± 5	1.1
250	247	108	391	360 ± 5	1.6
300	297	123	440	410 ± 5	2.2

	Flow Ra	ite (I/s)	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400
Nominal	Supply P	static (Pa)	7	23	50	84	133											
Duct Size	Exhaust P	static (Pa)	5	19	43	80	130										:	
150mm	Horizontal	@0.75m/s	-	0.5	1.0	1.3	1.6										:	
	Radial	@0.50m/s	0.4	1.1	1.5	2.1	2.4										:	
Nominal Processing	Throw (m)	@0.25m/s	0.9	1.8	2.4	3.0	3.6											
		IC	-	-	16	27	35											
	Flow Ra		25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400
Nominal		static (Pa)	-	9	20	36	54	76	103							<u>:</u>		<u>.</u>
Duct Size	Exhaust P	static (Pa)	3	14	30	50	80	118	160						:	<u>:</u>	:	<u>:</u>
200mm	Horizontal	@0.75m/s	-	-	0.8	1.2	1.3	1.9	2.5						:		:	i
	Radial	@0.50m/s	-	0.9	1.2	1.8	2.0	2.5	3.0							<u>.</u>	<u>:</u>	<u>.</u>
Diameter	Throw (m)	@0.25m/s	-	1.5	2.3	2.8	3.2	3.7	4.1									<u> </u>
		IC	-	-	-	-	18	24	27									
	Flow Rate (I/s)		25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400
Nominal	Supply P			8	17	25	35	44	56	70	85	102	123			ļ	ļ	ļ
Duct Size	Exhaust P		2		16	28	45	65	90	120	-	-	-					<u> </u>
250mm	Horizontal	@0.75m/s	.	-	0.7	1.1	1.2	1.8	2.3	2.4	2.5	2.7	3.1				<u>:</u>	<u>.</u>
Diameter	Radial Throw (m)	@0.50m/s		0.8	1.1	1.6	1.8	2.4	2.7	3.0	3.3	3.9	4.2		<u>.</u>	<u>.</u>	<u> </u>	ļ
Nominal Duct Size 250mm Diameter		@0.25m/s	-	1.3	2.2	2.4	3.0	3.6	3.9 17	4.2	4.8 22	5.1 27	5.4 31					:
		ite (l/s)	- 25	- 50	- 75	100	- 125	15 150	175	18 200	225	250	275	300	325	350	375	400
		static (Pa)	25	50	6	8	11	150	18	23	28	33	39	45	52	61	68	75
Nominal		static (Pa)			6	12	16	20	23	30	37	41	44	58	63	75	80	95
Duct Size	:	@0.75m/s			0.6	0.8	1.2	1.4	1.6	1.8	2.0	2.1	2.4	2.7	2.9	3.0	3.3	3.4
300mm	Horizontal Radial	@0.75m/s			1.0	1.5	1.8	2.0	2.3	2.6	2.7	3.0	3.3	3.5	3.6	3.7	3.9	4.1
Diameter	Throw (m)	@0.25m/s		_	1.8	2.3	2.7	3.0	3.2	3.3	3.6	3.9	4.2	4 4	4.5	4.8	5.0	5.1
		C			0			0.0	J. L	0.0	0.0	5.5		15	17	18	18	21

Automatic Environmental Ceiling Outlet - ECO-A

Model: ECO-Automatic

Description

The ECO Automatic is a circular ceiling diffuser with the capability of automatically altering a portion of the supply airflow, from a horizontal to a vertical throw, depending on the supply air temperature. Suited for both domestic and commercial situations the appearance of the ECO Automatic is enhanced by the addition of a perforated front face. If the damper is set to automatic mode the perforated face enables some air to be directed downwards when in heating mode, while a portion of the air continues to be directed horizontally. This spreading of the warm air ensures fast mixing and even temperature distribution across the height of the room.

Operation

The ECO can automatically direct a portion of the supply air vertically when the supply air temperature is above 30°C. A temperature sensing device detects the supply air temperature and opens or closes a 'go - no go' damper to position the damper in Heating Mode, or Cooling Mode. In Heating Mode a portion of the supply air is let through the holes in the front face allowing it to be projected vertically downwards. In Cooling Mode all of the supply air is directed horizontally allowing mixing with the room air at high level and therefore reducing the chance of draughts being felt. The ECO is powered by the supply air temperature and does not need any external power source.

The ECO Automatic can also be locked in either the Heating, or Cooling modes by positioning the Operator in the side of the front face. The Operator locks into position effectively stopping the 'go - no go' damper from moving.

Performance

The ECO Automatic has the same performance as the ECO Manual while in Cooling Mode. A very strong radial ceiling effect is maintained at varying flow rates, making it suitable for variable air volume systems. In heating mode the benefits of throwing a portion of the heated air vertically, is a greatly reduced temperature gradient across the height of the room and a considerably faster heat up period.

Installation

The ECO Automatic is very easy to install. A hole is created in the ceiling using the supplied template. The ECO will then be offered up to the ceiling and the ducting attached. The neck of the ECO is then inserted through the hole in the ceiling, enabling the four retaining legs to snap over, retaining the ECO tightly on the ceiling. The ECO can be mounted into both solid and suspended ceilings with little fuss, using the automatic snap over retaining legs.

Retrofit Installation

The ECO Automatic fits into the same sized hole as other similar types of diffuser. In addition, the slightly larger diameter outer flange, covers any imperfections in the ceiling finish that may have been left when the original diffuser was removed.

Construction and Finish

The ECO is constructed of a tough UV stabilised and fire rated engineering polymer. The colour of the ECO is White. All visible surfaces have a textured finish.

ECO-A	A (mm)	B (mm)	C (mm)	D (mm)
200	197	100	319	290 ± 5
250	247	108	391	360 ± 5
300	297	123	440	410 ± 5

ECO-A – Performance Data

Model: **ECO-A**

Horizontal Radial Throw - Cooling Mode.

		late (I/s)	50	75	100	125	150	175	200	225	250	275	300	325	350
Nominal	Static Pr	essure (Pa)	10	22	40	60	84	113	144	176	211				
Duct Size	Horizontal	@ 0.75 m/s		0.8	1.1	1.2	1.8	2.4	2.9	3.4	3.9				
200mm	Radial	@ 0.50 m/s	0.9	1.1	1.7	1.9	2.4	2.9	3.5	3.9	4.4				
Diameter.	Throw (m)	@ 0.25 m/s	1.4	2.2	2.7	3.0	3.5	3.9	4.4	4.9	5.5				
	N	С			16	20	25	29	32	35	39				
		late (I/s)	50	75	100	125	150	175	200	225	250	275	300	325	350
Nominal	Static Pr	essure (Pa)		19	28	39	48	62	77	94	112	135	160		
Duct Size	Horizontal	@ 0.75 m/s		0.7	1.0	1.1	1.7	2.2	2.3	2.4	2.6	2.9	3.1		
250mm	Radial	@ 0.50 m/s		1.0	1.5	1.7	2.3	2.6	2.9	3.1	3.7	4.0	4.3		
Diameter.	Throw (m)	@ 0.25 m/s		2.1	2.3	2.9	3.4	3.7	4.0	4.6	4.8	5.1	5.4		
	N	С					16	18	20	24	29	33	36		
	Flow F	Rate (I/s)	50	75	100	125	150	175	200	225	250	275	300	325	325
Nominal	Static Pr	essure (Pa)			9	12	17	20	25	31	36	43	50	57	67
Duct Size	Horizontal	@ 0.75 m/s			0.8	1.1	1.3	1.5	1.7	1.9	2.0	2.3	2.6	2.8	2.9
300mm	Radial	@ 0.50 m/s			1.4	1.7	1.9	2.2	2.5	2.6	2.9	3.1	3.3	3.4	3.5
Diameter.	Throw (m)	@ 0.25 m/s			2.2	2.6	2.9	3.0	3.1	3.4	3.7	4.0	4.2	4.3	4.6
	N	С									18	21	23	26	29

Model: ECO-A

Horizontal and Vertical Throws - Heating Mode.

	Flow Rate (I/s)	50	75	100	125	150	175	200	225	250	275	300	325	350
	Static Pressure (Pa)	6	14	24	38	53	70	87	105	124				
Nominal	Horizontal @ 0.75 m/s		0.4	0.6	0.7	0.9	1.1	1.3	1.6	1.9				
Duct Size	Radial Throw @ 0.50 m/s	0.4	0.6	0.9	1_	1.2	1.4	1.6	1.9	2.2				<mark> </mark>
200mm	(m) @ 0.25 m/s	0.8	1.2	1.4	1.6	1.8	2	2.3	2.6	2.8	<u>:</u>			
Diameter.	Vertical @ 0.75 m/s	-	0.2	0.4	0.6	0.8	1	1.3	1.5	1.8				
Diameter.	Throw @ 0.50 m/s	0.2	0.3	0.6	0.8	1	1.2	1.4	1.6	1.9				
	(m) @ 0.25 m/s	0.4	0.6	0.8	1	1.2	1.4	1.7	2	2.3				
	NC	-	-	18	20	24	26	31	33	36				
	Flow Rate (I/s)	50	75	100	125	150	175	200	225	250	275	300	325	350
	Static Pressure (Pa)		11	17	24	30	39	49	59	71	86	101		
Nominal	Horizontal @ 0.75 m/s		0.3	0.5	0.6	0.9	1.1	1.2	1.2	1.3	1.5	1.7		
Duct Size	Radial Throw @ 0.50 m/s		0.5	0.8	0.9	1.2	1.3	1.5	1.6	1.9	2.1	2.3		
	(m) @ 0.25 m/s		1.1	1.2	1.5	1.8	1.9	2.1	2.4	2.5	2.7	2.9		
250mm	Vertical @ 0.75 m/s		0.2	0.4	0.5	0.7	1	1.1	1.1	1.2	1.3	1.5		
Diameter.	Throw @ 0.50 m/s		0.2	0.4	0.7	1	1.1	1.2	1.3	1.4	1.5	1.8		
	(m) @ 0.25 m/s		0.3	0.5	1	1.2	1.3	1.4	1.6	1.7	1.8	1.9		
	NC		-	-	-	-	18	20	23	28	32	34		
:														
	Flow Rate (I/s) Static Pressure (Pa)	50	75	100 5	125	150 10	1 75 12	200 16	2 25 19	250 23	275 27	300 31	325 36	350 42
				0.4	0.6	0.7	0.8	0.9		1.1	1.2	1.3	1.4	1.5
Nominal	Horizontal @ 0.75 m/s Radial Throw @ 0.50 m/s			0.4	0.9	U.r 1	1.1	1.3	1 1.4	1.5	1.6	1.7	1.4	1.8
Duct Size	• •• • • • • • • • • • • • • • • • • • •			4	1.3	1.5	1.6	1.7	1.8	1.9	2.1	2.2	2.2	2.4
300mm	(m) @ 0.25 m/s			1.1 0.3	0.5	0.6	0.7	0.8	0.9	1.9	1.1	1.2	1.3	1.4
Diameter.	Vertical @ 0.75 m/s Throw @ 0.50 m/s			0.5	0.5	0.8	0.9	U.0 1	1.1	1.2	1.3	1.4	1.5	1.4
				0.5	0.8	1	1.1	1.2	1.3	1.4	1.5	1.4	1.8	1.9
				U.r	0.0	1	1.1	1.2	1.3					
	NC			<u> </u>	-	 :			<u> </u>	18	20	22	25	28

Notes

- 1. Cooling Performance Data based on Isothermal air.
- ${\bf 2. \, Heating \, Performance \, Data \, based \, on \, a \, temperature \, differential \, of \, {\bf 17 \, Degrees \, C.} }$
- 3. Seismic restraints required but not supplied.

Model: ECO-R

Return/Exhaust Performance.

Nominal	Flow Rate (I/s)	25	50	75	100	125	150	
Duct Size 150mm	Negative Static Pressure (Pa)	5	19	43	80	130	175	
Diameter.	NC	18	22	24	27	35	37	
	ECO-A Size			W	eight in K	g		
	200				1.1			
	250		1.6					
	300		2.2					
	Weight in Kg							
			0.8					

86D

Heating Comparison – **ECO - A**

Heating Comparison

The graphical comparison below shows the temperature gradient in a room that has been heated from cold. The graphs demonstrate how the ECO – Automatic quickly achieves an even heat distribution across the height of the room. The vertical and horizontal air jets are more effective at evenly distributing and mixing the heat than with a horizontal throw only.

ECO - Automatic Diffuser Performance Comfort Zone Cool Zone Hot Zone Cool Zone

ECO – Models & Settings

Model: **ECO-M**

Environmental Ceiling Outlet Manual circular radial pattern ceiling diffuser with plaque fascia.

Model: ECO-A

Environmental Ceiling Outlet Automatic circular radial pattern ceiling diffuser with perforated fascia.

Model: ECO-R*

Environmental Ceiling Outlet - Return/Exhaust

(Design, as ECO-A above).

* 150mm Duct Size Only

Adjustment Settings

The ECO Automatic Diffuser is versatile and can be adjusted to operate Automatically or set to provide the combination air pattern or alternatively set for horizontal air pattern only by simply moving the adjustment arm into the desired setting position.

Combination Horizontal & Vertical (heating)

Horizontal Air Pattern Cooling Mode

Horizontal Only (cooling)

Damper Closed

SAV – Steel Air Valve

Model: SAV

Description

The SAV diffuser, used in exhaust applications, offers an aesthetically pleasing finish in a steel construction. Complete with an adjustable cone for airflow volume adjustment, the cone can easily be adjusted by removing the diffuser from the mounting frame. A peripheral gasket seal guarantees a perfect seal between the diffuser and frame to hold the cone in position.

Installation

The SAV is suitable for all installation types (walls, ceilings, or duct installations). The diffuser can be rotated in the groove for quick removal and adjustment of the cone position. Fastenings should be through the mounting frame.

Component Parts

- 1) Diffuser
- 2) Cone
- 3) Frame

Construction and Finish

The SAV is constructed from galvanised steel with the diffuser and cone available in white powdercoat.

Performance

Adjust the airflow volume by rotating the cone within the diffuser.

Model: SAV

Exhaust Performance Data

	Flow Ra	te (I/s)	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
		X+12	-			4.1	7.3	11.8	17.7	25.3	34.4	45.7	58.5	73.4	91.0	110.6	133.0	-
Nominal	Exhaust	X+6	-	-	4.7	9.4	16.2	25.1	36.6	51.0	68.1	88.1	110.8	136.9	-	-	-	-
Duct Size	Static	X+3	-	-	6.7	13.2	22.5	34.6	50.3	69.3	91.8	118.2	148.7	-	-	-	-	-
150mm	Pressure	X+0	-	3.9	10.2	20.1	34.0	51.9	74.6	102.5	135.7	-	-	-	-	-	-	-
Diameter	(Pa)	X-3	-	6.1	15.7	30.7	52.1	79.6	114.4	-	-	-	-	-	-	-	-	-
		X-6	-	9.0	24.0	48.4	83.3	129.0	-	-	-	-	-	-	-	-	-	-
	N	С	-	-	-	<25	30	35	>40		-		-	-	-	-	-	-
	Flow Ra	te (I/s)	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
	Flow Ra	te (I/s) X+12	15	20	25	30 4.9	35 7.1	40 9.9	45 13.3	50 17.3	55 21.9	60 27.2	65 33.3	70 40.0		80 55.9		90 75.1
Nominal			15	20	25 - 6.3		35 7.1 14.4	40 9.9 19.9	45 13.3 26.5	50 17.3 34.4		60 27.2 53.5	33.3	40.0		55.9	65.1	
Nominal Duct Size	Flow Ra Exhaust Static	X+12	15	20 - - 4.9	6.3	4.9 9.8	7.1	9.9 19.9	13.3 26.5	17.3	21.9	27.2	33.3 65.2	40.0 78.1	47.6	55.9 108.4	65.1	75.1
•	Exhaust Static Pressure	X+12 X+6	15	-	- 6.3	4.9 9.8 13.4	7.1 14.4	9.9 19.9 27.3	13.3 26.5 36.4	17.3 34.4	21.9 43.3 59.8	27.2 53.5	33.3 65.2 90.4	40.0 78.1 108.3	47.6 92.5	55.9 108.4	65.1	75.1
Duct Size	Exhaust Static	X+12 X+6 X+3	-	- - 4.9 7.3	- 6.3 8.5	4.9 9.8 13.4 19.7	7.1 14.4 19.6	9.9 19.9 27.3	13.3 26.5 36.4 52.9	17.3 34.4 47.2	21.9 43.3 59.8 86.5	27.2 53.5 74.1	33.3 65.2 90.4	40.0 78.1 108.3	47.6 92.5	55.9 108.4	65.1	75.1
Duct Size 200mm	Exhaust Static Pressure	X+12 X+6 X+3 X+0	-	- - 4.9 7.3	- 6.3 8.5 12.6	4.9 9.8 13.4 19.7 34.0	7.1 14.4 19.6 28.7	9.9 19.9 27.3 39.7	13.3 26.5 36.4 52.9	17.3 34.4 47.2 68.6	21.9 43.3 59.8 86.5	27.2 53.5 74.1	33.3 65.2 90.4	40.0 78.1 108.3	47.6 92.5	55.9 108.4	65.1	75.1

ECO-A, ECO-M, CRA & CRP

Product Ordering Key and Suggested Specifications

Circular Ceiling Diffusers shall be Holyoake Model CRA with compact flange and adjustable air pattern. Diffusers shall be manufactured from spun aluminium with threaded adjustable core mechanism. The air pattern shall be radial and adjustable from horizontal to vertical. Circular Ceiling Diffuser to be supplied with integral mounting system. Diffusers shall be finished in powdercoat and fitted with accessories and dampers where indicated.

All shall be as manufactured by Holyoake.

Circular Ceiling Diffusers shall be Holyoake Model CRA-T with compact flange and thermal core adjustment. Diffusers shall be of spun aluminium construction with Holyoake thermal power pill. With supply air temperatures below 24 degrees the supply air pattern is diffused horizontally. With supply air temperatures above 28 degrees the core is automatically lifted to produce a supply air pattern diffused vertically. Circular Ceiling Diffuser to be supplied with integral mounting system. Diffusers shall be finished in powdercoat and fitted with accessories and dampers where indicated.

All shall be as manufactured by Holyoake.

Circular Ceiling Diffusers shall be Holyoake Model CRP with compact flange and adjustable supply air plaque. Diffusers shall be manufactured from spun aluminium with threaded adjustable plaque core. The air pattern shall be radial and adjustable from horizontal to vertical. Circular Ceiling Diffusers to be supplied with integral mounting system. Diffusers shall be finished in powdercoat and fitted with accessories and dampers where indicated. All shall be as manufactured by Holyoake.

Circular Ceiling Diffusers shall be Holyoake Model CRP-T with compact flange and thermal core adjustment. Diffusers shall be of spun aluminium construction with Holyoake thermal power pill. With supply air temperatures below 24 degrees the supply air pattern is diffused horizontally. With supply air temperatures above 28 degrees the core is automatically lifted to produce a supply air pattern diffused vertically. Circular Ceiling Diffuser to be supplied with integral mounting system. Diffusers shall be finished in powdercoat and fitted with accessories and dampers where indicated.

All shall be as manufactured by Holyoake.

Ceiling diffusers shall be Holyoake Series ECO-M, manufactured from injection moulded tough U.V. stabilised and fire rated engineering polymer, in self coloured white as standard. Series ECO-M shall have the ability to regulate the airflow via an adjustable central cone.

All shall be as manufactured by Holyoake.

Ceiling diffusers shall be Holyoake Series ECO-A, manufactured from injection moulded tough U.V. stabilised and fire rated engineering polymer, in self coloured white as standard. Series ECO-A shall have the ability to regulate the airflow via an adjustable central cone and automatically direct a portion of the airflow downwards, when supplying air above 30°C. All shall be as manufactured by Holyoake.

Ceiling diffusers shall be Holyoake Series ECO-R, manufactured from injection moulded tough U.V. stabilised and fire rated engineering polymer, in self coloured white as standard. The exhaust air can be regulated via an adjustable central cone.

All shall be as manufactured by Holyoake.

BHC	Barrel High Capacity	92 - 93D
DFR	Displacement Floor Mounted Round	98 - 99D
DS	Displacement Step Mounted	100 - 101D
EL	Eyelash (Curved Blade)	104 - 109D
ELP	Eyelash (Curved Blade) Panel	105 - 109D
FSD	Floor Swirl Diffuser	102 - 103D
JND	Jet Nozzle Diffuser	96 - 97D
JD	Jet Diffuser	94 - 95D
TLC-EL	Eyelash (Curved Blade) Curved Frame	105 - 109D
Ordering Key	y & Specification	110 - 111D

- Barrel, Jet, Swirl, Displacement and Eyelash Diffusers.
- Floor, Step, Wall, Ceiling and Panel Mounted.
- Adjustable, Perforated and Curved Blade Options.
- Curved Frame.
- Full range of air distribution patterns.

BHC - High Capacity Barrel Diffuser

Model: BHC

The Holyoake BHC(Barrel High Capacity) is a high capacity barrel diffuser that has been developed to provide a solution when large open areas are to be conditioned. Applications include large retail outlets, gymnasiums, conference centres and factories, or any large space requiring high capacity and long throw diffusion.

The BHC Diffuser has the ability to direct conditioned air to where it is needed. Individually adjustable blades allow the throw direction and spread of the supply jet to be altered. The rotating barrel allows the direction of the supply to be altered vertically. This function can be motorised to provide more efficient heating and cooling functions, as the jet can be directed downwards when the system is in heating mode.

Construction

The BHC diffuser is constructed from aluminium. Two standard sizes are available but longer units may be supplied, if requested. Consult with your local Holyoake branch.

The BHC can be supplied in an anodized, mill or powdercoated finish.

Installation

The BHC is designed to be mounted into a plenum box that may contain a number of the units pointing in different directions.

The 30mm flange allows the unit to be mounted to a plenum using screw fixings through the flange.

Dimensions

Options

Motorised – The facility to electrically rotate the barrel from horizontal, to downwards angled throws, (when in heating mode), can be achieved with either 24, or 230 V AC actuators, fitted internally to the mounting flange, concealing them within the supply plenum.

Thermal – A Thermal Power Pill, can be fitted to achieve the same adjustment as above, without the requirement of an electrical supply. Both options providing greater heating efficiencies.

BHC SIZE	Approximate Weight in Kg.
635 x 300	3.08
1270 x 300	6.20
If Motorised	add 2 Kg.

Changing the Direction of Throw

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

Performance Data - BHC

	Size		635 x 300			1270 x 300	
	Deflection	0°	15°	25°	0°	15°	25°
Flow (m ³ /s)	Free Area (m²)	0.091	0.072	0.059	0.100	0.085	0.072
	Velocity at outlet (m/s)	3.5	4.0	4.7			
0.280	Throw to 0.75m/s (m)	4.9	4.3	3.4			
0.280	Pt (Pa)	7	10	14			
	NC	-	-	-			
	Velocity at outlet (m/s)	4.2	5.3	6.4			
0.380	Throw to 0.75m/s (m)	6.7	5.8	4.6			
0.300	Pt (Pa)	13	17	24			
	NC	-	-	-			
	Velocity at outlet (m/s)	5.8	6.6	7.9	2.9	3.3	4.1
0.470	Throw to 0.75m/s (m)	8.5	7.3	6.1	6.4	5.5	4.6
0.470	Pt (Pa)	20	26	38	5	7	10
	NC	-	21	26	-		-
	Velocity at outlet (m/s)	7.0	7.9	9.5	3.5	4.0	4.9
0.570	Throw to 0.75m/s (m)	10.1	8.5	7.0	7.0	5.8	4.9
0.510	Pt (Pa)	29	38	55	8	10	14
	NC	22	26	31	-		-
	Velocity at outlet (m/s)	8.2	9.2	11.1	4.1	4.6	5.7
0.660	Throw to 0.75m/s (m)	11.3	9.4	7.9	7.6	6.4	5.2
0.000	Pt (Pa)	40	51	74	10	13	20
	NC	27	31	36	-		22
	Velocity at outlet (m/s)	9.3	10.5	12.7	4.7	5.3	6.6
0.750	Throw to 0.75m/s (m)	13.1	11.0	9.1	9.1	7.6	6.4
0.130	Pt (Pa)	53	67	97	13	17	26
	NC	31	35	40	-	-	23
	Velocity at outlet (m/s)				5.3	6.0	7.4
0.850	Throw to 0.75m/s (m)				11.6	9.8	8.2
	Pt (Pa)				17	21	33
	NC				-	21	26
	Velocity at outlet (m/s)				5.9	6.6	8.2
0.940	Throw to 0.75m/s (m)				12.5	10.7	8.8
0.340	Pt (Pa)				21	26	40
	NC				20	24	29
	Velocity at outlet (m/s)				6.6	7.5	9.2
1.060	Throw to 0.75m/s (m)				14.0	11.9	9.8
1.000	Pt (Pa)				26	34	51
	NC				24	28	33
	Velocity at outlet (m/s)				7.3	8.3	10.2
1.180	Throw to 0.75m/s (m)				15.2	12.8	10.7
1.100	Pt (Pa)				32	41	63
	NC				27	31	36
	Velocity at outlet (m/s)				8.8	10.0	12.3
1.420	Throw to 0.75m/s (m)				18.3	15.5	12.8
1.720	Pt (Pa)				47	60	91
	NC				32	36	41

Performance Notes

- 1. All pressures are in pascals. To obtain static pressure data provided.
- 2. Throw figures are to a terminal velocity of 0.75m/s.
- pressure subtract velocity pressure from the total 3. The NC values are based on a room absorption of 10dB re $10^{\text{-}12}$ watts.

Corrections To Listed Data.								
Throw in m	0.75m/s	0.50m/s	0.25m/s					
Multiplier	1.0	1.5	2.0					
Deflection		15°	25°					
Multiplier	1.00	0.84	0.70					

J D – Jet Diffuser

Model: JD

The Holyoake JD range of Jet Diffusers have been designed to provide an attractive option for air conditioning large areas. JD diffusers are perfect for situations where large supply air quantities and throw distances are required. All JD diffusers are constructed from three cones that provide a uniformity of appearance through the range.

The JD has two separate modes. Firstly there is diffuse mode where the supply air is spread and diffused into the room over a relatively short distance. The second mode is Jet Mode that throws a high velocity jet of air over a long distance. In Jet mode the direction of throw can be adjusted by up to $15\,^\circ$ from the centre line of the diffuser. Switching between the two modes is achieved by rotating the cone set through $180\,^\circ$.

Sizes range from 200mm to 350mm in 50mm increments. JD diffusers can be mounted directly into the end of circular duct, or can be mounted into a plenum box, which may supply air to a number of JD diffusers. Alternatively the JD diffuser may be mounted into a wall, or angled ceiling.

Construction

JD Jet Diffusers are constructed from aluminium spinnings and are held together using threaded rods and aluminium spacers.

The diffuser comes complete with an installation system that is also of spun aluminium construction.

Installation - Mounting System

The JD comes complete with a patented mounting system designed to provide a perfect finish, regardless of the wall, or ceiling construction. The mounting plate can be fitted after the wall, or ceiling is in place and then the JD simply pushed into place when all finishing work is complete. The JD is held securely in place with spring steel retaining clips.

Jet Diffuser

JD Shown in Diffuse Mode

Size		m)			
3120	A	В	С	D	Е
JD-200	58	126	184	205	234
JD-250	74	126	244	268	298
JD-300	92	140	294	319	348
JD-350	94	140	344	369	398

Optional Mounting Plates

Plate constructed from aluminium sheet mounted in a Style No. 1 Frame surround, see page 51B. W and H dimensions listed are neck sizes.

	Number of JD Mounting Holes							
JD Size	1	2	3	4				
	WxH	WxH	WxH	WxH				
JD-200	334x334	618x334	902x334	1186x334				
JD-250	398x398	746x398	1094x398	1442x398				
JD-300	448x448	846x448	1244x448	1642x448				
JD-350	498x498	946x498	1394x498	1842x498				

Heating Throw Factors								
Size	Hea	ting Differer	ntial					
3126	5°C	10°C	20°C					
JD-200	1.30	0.90	0.65					
JD-250	1.20	0.85	0.60					
JD-300	1.10	0.75	0.55					
JD-350	1.00	0.65	0.45					

To estimate maximum vertical projection under heating conditions multiply jet throw data by the relevant factor.

Performance Notes

- 1. Listed throw distances are to a terminal velocity (Vt) of 0.5 m/s for isothermal conditions.
- 2. The NC values are based on a room absorption of 10dB re 10^{-12} Watts.
- 3. To estimate vertical projection under cooling conditions multiply throw factors as follows:-
 - 10° C cooling x 1.15, 5° c cooling by 1.10.
- 4. Caution is advised if combining 'diffuse' mode and 'jet' mode off the same supply air system.
 - There are considerable static pressure differences between both modes.
- 5. Seismic Restraints required, but not supplied.

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

Nominal Duct Size	Approximate Weight in Kg.
JD - 200	1.10
JD - 250	1.20
JD - 300	1.50
JD - 350	1.80

JND – Jet Nozzle Diffuser

Model: JND

The Holyoake Jet nozzle diffuser (JND) has been specifically designed to supply large air quantities over long throws with the added benefit of directional control. Jet nozzle diffusers are perfect for supplying large spaces such as halls, airports and swimming pools. The JND consists of a single orifice, which can be adjusted in all directions.

Sizes range from 160mm to 400mm in five incremental sizes. JNDs can be mounted directly into the end of circular duct, or can be mounted into a plenum box, which may supply air to a number of diffusers. Alternatively the JND may be mounted into a wall, or angled ceiling.

Construction

Jet nozzle diffusers are constructed mainly from aluminium spinnings with the exception of the steel surround. The orifice is clamped between the front and rear faces which allows the orifice to move for directional control. Comes in white as standard.

Installation

The JND comes with a concealed mounting system. The diffuser is securely fixed in place using fastners to the wall or ceiling. The front cover face-plate simply twists on to the diffuser to cover the mounting system and provide a seamless finish.

Features

- Simple installation
- Modern aesthetic look.
- Adjustable core
- · Directional control
- Long throws

Size	Dimensions (mm)									
3120	A	В	С	D	Е	F				
160	159	85	168	130	210	110				
200	198	114	215	150	255	118				
250	251	142	263	170	300	137				
360	355	200	363	215	425	160				
400	399	231	407	245	471	168				

			Air Flow Rate (I/s)									
Nominal Size		20	30	50	70	100	150	200	300	400	500	
	Throw (m)	0.6	4.6	10.6	14.1							
160	Static Pressure (Pa)	7.8	17.4	47.5	92.1							
	NC	<20	<20	<20	28							
	Throw (m)		1.5	5.0	9.8	15.0	18.0					
200	Static Pressure (Pa)		3.8	10.9	21.9	45.8	105.7					
	NC		<20	<20	20	27	36					
	Throw (m)			2.3	6.7	12.1	18.0	19.9				
250	Static Pressure (Pa)			6.1	11.8	24.0	53.6	94.8				
	NC			<20	<20	20	26	38				
	Throw (m)					7.7	12.5	16.8	23.8	28.8		
360	Static Pressure (Pa)					5.4	12.1	21.3	47.5	83.9		
	NC					<20	<20	23	28	35		
	Throw (m)						10.3	14.0	20.2	24.8	27.8	
400	Static Pressure (Pa)						7.3	13.1	29.7	53.0	83.1	
	NC						<20	21	24	26	35	

Heating Throw Factors								
Size	Heating Differential							
3120	5°C	10°C	20°C					
160	1.40	0.95	0.7					
200	1.30	0.90	0.65					
250	1.20	0.85	0.60					
360	1.10	0.75	0.55					
400	1.00	0.65	0.45					

To estimate maximum vertical projection under heating conditions multiply jet throw data by the relevant factor.

Nominal Duct Size	Approximate Weight in Kg.
160	0.7
200	1.1
250	1.8
360	2.9
400	3.4

Notes on Performance Data

- 1. Listed throw distances are to a terminal velocity (Vt) of 0.5 m/s for isothermal conditions.
- 2. The NC values are based on a room absorption of 10dB re 10^{-12} Watts.
- ${\it 3.} \ To \ estimate \ vertical \ projection \ under \ cooling \ conditions \ multiply \ throw \ factors \ as \ follows:-$
 - 10°C cooling x 1.15, 5°c cooling by 1.10.
- 4. Due to lab limitations the throws were determined using Computational Fluid dynamics software (CFD).
- 5. Seismic Restraints may be required, but not supplied.

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

FR - Round Floor Mounted Displacement Diffuser

Model: DFR

The Holyoake DFR Series of supply diffusers operate on the principles of Displacement Ventilation.

Displacement Ventilation is essentially a buoyancy driven displacement process where supply air at a temperature slightly cooler than the design room air temperature, is delivered into the room at low level. The cool air spreads across the floor, only rising when it comes into contact with a heat source such as a human. The heated air rises and will exit the room via openings at ceiling level, taking with it any pollutants that have been picked up on the way.

Holyoake DFR Displacement Diffusers have been designed to enable floor mounting, although they can also be used in many other locations. They are ideally suited for use in Auditoria and Theatres. Typically these areas contain a large volume of space that although not occupied, is still conditioned. By introducing the treated air unobtrusively from directly behind the occupants, only the space around the patrons is conditioned, rather than the whole auditorium. This ensures that the occupied area is maintained at ideal conditions, whilst saving energy treating the whole space at design parameters.

Features

- Compact Unobtrusive Design.
- Energy Saving Operation.
- No Drafts.
- · Low Noise.
- · Simple Installation.
- Black Powder Coat Finish.

Construction

The DFR is of robust construction and manufactured from zinc coated steel. Standard finish is powder coat Black.

The Holyoake DFR Series of supply diffusers operate on the principles of Displacement Ventilation.

Installation

The DFR is simply inserted through a hole in the floor ensuring that the neck of the diffuser is fed from the supply plenum under the floor area. The diffuser is then fixed in place with screws inserted through the four holes in the mounting plate and suitably sealed between the flange and the plenum.

					ce from diffuse	
Flowrate (I/s)	∆Ps (Pa)	NC	100mm	200mm	300mm	400mm
7.5	11	17	0.25	0.15	0.10	-
10.0	21	20	0.35	0.25	0.15	0.10
12.5	28	21	0.45	0.35	0.25	0.15

Performance Notes

- $1.\,\Delta\text{Ps}-\text{Static}$ Pressure inside the supply plenum
- 2. Acoustic data assumes a standard room absorption of 10dB, Re 10^{-12} watts.
- 3. All testing was performed with the diffuser mounted in a plenum box.

Performance

The DFR displacement diffuser supplies a low velocity, low momentum blanket of air into the occupied space. Low velocities ensure that no drafts are felt by the occupants. Plenum pressures of around 10-20 Pa will achieve excellent balancing across all diffusers while achieving low noise and throw lengths.

System Balancing

The DFR Displacement Diffuser achieves the unobtrusive delivery of conditioned air, whilst still maintaining a significant pressure drop across the grille. This allows the diffuser to be used in plenum fed distribution systems without balancing dampers. In theatres and auditoria, the area under the seating can be used as the supply plenum.

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

Series	Approximate Weight in Kg.
DFR	0.76

S – Step Mounted Displacement Diffuser

Model: DS

The Holyoake DS Series of supply diffusers operate on the principles of Displacement Ventilation.

Displacement Ventilation is essentially a buoyancy driven displacement process, where supply air at a temperature slightly cooler than the design room air temperature, is delivered into the room at low level. The cool air spreads across the floor only rising when it comes into contact with a heat source such as a human. The heated air rises and will exit the room via openings at ceiling level, taking with it any pollutants that have been picked up on the way.

Holyoake DS Displacement Diffusers have been designed to enable step mounting, although they can also be used in many other locations. They are ideally suited for use in Auditoria and Theatres. Typically these areas contain a large volume of space that although not occupied is still conditioned. By introducing the treated air unobtrusively from directly behind the occupants, only the space around the patrons is conditioned, rather than the whole auditorium. This ensures that the occupied area is maintained at ideal conditions, whilst saving energy treating the whole space at design parameters.

Features

- Unobtrusive Step Mounting.
- Energy Saving Operation.
- No Drafts.
- · Low Noise.
- Easy Installation.
- · Decorative Fascia.

Performance

The DS displacement diffuser supplies a low velocity, low momentum, blanket of air into the occupied space. Low velocities ensure that no drafts are felt by the occupants. Plenum pressures of around 15-20 Pa will achieve excellent balancing across all diffusers, while achieving low noise and throw lengths.

Performance Notes

- 1. $\Delta \text{Ps}-\text{Static}$ Pressure inside the supply plenum.
- 2. Throw lengths are based on a velocity of 0.25m/s.
- 3. Exit Velocity is the supply air velocity on leaving the diffuser face.
- 4. A_{N} is the area of the exact neck of the diffuser.
- 5. Acoustic data assumes a standard room absorption of 10dB, Re $10^{\text{-}12}$ watts.
- $\label{eq:continuous} \textbf{6.} \ \textbf{All testing was performed with the diffuser mounted in a plenum box.}$

Guide Weights 25mm Flange							
Nominal Size	Approximate Weight in Kg.						
250 x 150	1.08						
400 x 300	3.50						
600 x 200	2.21						
200 x 600	2.21						
800 x 150	3.46						
1000 x 120	4.33						

Surround and Fixing Systems

The design of the grille ensures that any number of simple installation methods can be used. The Holyoake RC frame system is compatible with the 25 mm wide flange which, allows for the easy removal of the grille for cleaning, or maintenance purposes. The RC frame also allows the grille to be installed once all other trades are finished, ensuring the grille is kept in perfect condition. Note: RC frame is not available with the 17 mm wide flange. Alternatively, the grille can be sprung, or face fixed through the flange provided.

Two flanges are available:

 $\label{eq:normalized-style} Narrow Flange-17 mm \ wide. Style \ No. 5 \ on page 51B$ $\label{eq:normalized-style$

System Balancing

The DS Displacement Diffuser achieves the unobtrusive delivery of conditioned air, whilst still maintaining a significant pressure drop across the grille. This allows the diffuser to be used in plenum fed distribution systems without balancing dampers. In theatres and auditoria the area under the seating can be used as the supply plenum.

Performance Data – DS

Size	Flowrate (I/s)	5.0	7.5	10.0	12.5	15.0	20.0	25.0	30.0	35.0	40.0	45.0
	∆Ps (Pa)	4	6	10	14	19						
400x120 300x160	Throw mm	150	200	350	450	800						
200x240 A,=0.039	Exit Vel (m/s)	0.29	0.31	0.35	0.42	0.50						
_N -0.039	NC	-	15	17	19	20						
500x120	ΔPs (Pa)		5	9	12	17	27					
400x150	Throw mm		-	300	350	400	900					
300x200 200x300	Exit Vel (m/s)		0.22	0.30	0.34	0.38	0.50					
A _N =0.05	NC		13	14	15	17	19					
600x120	∆Ps (Pa)			5	7	9	15	22				
400x180	Throw mm			150	300	450	750	900				
300x240 200x360	Exit Vel (m/s)			0.29	0.35	0.40	0.45	0.50				
A _N =0.06	NC			-	14	16	19	20				
700x120	ΔPs (Pa)				6	9	14	20	29			
600x140 400x210	Throw mm				-	-	500	750	1000			
300x280 200x420	Exit Vel (m/s)				0.20	0.25	0.35	0.42	0.50			
A _N =0.07	NC				14	16	18	20	23			
800x120	∆Ps (Pa)					6.5	11	16	23	30		
600x160 400x240	Throw mm					-	250	450	750	1000		
300x320 200x480	Exit Vel (m/s)					0.25	0.30	0.37	0.45	0.50		
A _N =0.081	NC					14	17	20	22	25		
900x120	∆Ps (Pa)						9	13	18.5	24	31	
600x180 400x270	Throw mm						200	300	600	900	1300	
300x360 200x540	Exit Vel (m/s)						0.30	0.35	045	0.50	0.58	
A _N =0.091	NC						17	19	22	24	26	
1000x120	∆Ps (Pa)						7	10	15	19	25	31
800x150 600x200	Throw mm						150	250	500	650	900	1050
400x300 200x600	Exit Vel (m/s)						0.30	0.33	0.40	0.45	0.50	0.58
A _N =0.101	NC						16	18	21	23	25	26

^{*}See Performance Data Notes on Page 100D.

FSD – Floor Swirl Diffuser

Model: FSD / FSD-DD

The FSD Floor Swirl Diffuser is designed for use in raised floor air distribution systems, where the floor cavity is used as a pressurised supply air plenum.

The FSD core design produces a high velocity "swirl" discharge air pattern. This achieves high induction rates of room air which optimises mixing for maximum comfort conditions.

Construction

The Holyoake FSD is constructed of either die cast aluminium or high impact polycarbonate, complying with UL Standard 94-5V for flammability. It includes a low pressure drop core, dirt and dust collection basket, (which catches anything that might fall through the diffuser face and is removable for cleaning); with a combined volume control damper assembly.

A unique adjustment Pentagon allows for 5 control positions at 30, 35, 45, 65 and 85% of design flow. Default is set at 30%.

By rotating the fascia the desired airflow can be obtained between the minimum (set position) and maximum (fully open) positions.

A trim ring flange, compliments contemporary décor and lies flush with the low profile face design (of a nominal 220 mm diameter), secures the carpet and prevents the edges from fraying.

A unique adjustable mounting clamp adapts for variable floor thicknesses and permits simple and secure installation from above, without removal of the floor panel, or carpet.

The FSD is also available in a directional model, the FSD-DD. The swirl discharge is offset by 15° and the direction can be user adjusted. The performance and swirl pattern is identical to the FSD, see the figure on the following page.

Both the aluminium and polycarbonate FSD have been load tested by the Australian Wool Testing Authority (AWTA) and supported loads of 1600kg and 700kg respectively before failure.

The polycarbonate version comes finished standard in grey, or black. Please specify when ordering.

Features

- Rotatable Swirl Fascia.
- Volume Control Damper, with Unique Adjustment Pentagon.
- Dirt and Dust Collection Basket.
- Adjustable Mounting Clamps, with Trim Ring.
- Architecturally Pleasing.
- High Impact Polycarbonate or Die Cast Aluminium.

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

Performance Data – **FSD**

Performance Notes

- 1. Projection and spread data were determined in a room with a 3.4m ceiling height and 12 $^{\circ}$ C ΔT , between supply air and averaged occupied room temperature.
- 2. Vertical projection (throw) is the maximum height above the floor where the terminal velocities of 0.75, 0.5 and 0.25 m/s were observed. Horizontal spread is the total width of the isovel where terminal velocities of 0.75, 0.5 and 0.25 m/s were observed.

DT (°C)	-6	-8	-10	-12	-14	-16
Projection, m	x 1.33	x 1.11	x 1.00	x 1.06	x 0.92	x 0.91
Spread, m	x 0.87	x 0.94	x 1.00	x 1.06	x 1.11	x 1.16

- 3. Noise Criteria (values) based on 10dB room absorption, re 10⁻¹² watts.

 Dash (-) in space denotes an NC value less than 15.
- 4. Pressure is in Pa.
- 5. Tests conducted with dirt basket/damper installed. Damper fully open.
- 6. Acoustic testing was performed by VIPAC and full noise spectrum data is available on request.

Series	Approximate Weight in Kg.
FSD	1.41 Polycarbonate
FSD-A	2.75 Die Cast Aluminium

Airflow I/s	10	20	30	40	50	60	70	80
Plenum Pressure (Pa)	0	3	5	11	12	17	26	33
Vertical Projection, m	0.04 - 0.26 - 0.96	0.20 - 0.45 - 1.10	0.30 - 0.70 - 1.60	0.50 - 1.00 - 2.00	0.55 - 1.15 - 2.05	0.59 - 1.30 - 2.10	1.00 - 1.83 - 2.14	1.28 - 1.97 - 2.20
Horizontal Spread, m	0.07 - 0.19 - 0.38	0.13 - 0.19 - 0.38	0.16 - 0.25 - 0.64	0.17 - 0.30 - 0.70	0.18 - 0.36 - 0.71	0.20 - 0.40 - 0.76	0.30 - 0.51 - 0.83	0.41 - 0.64 - 0.92
NC	-	-		-	-	-	-	15

E _ – Eyelash (Curved Blade) Diffusers

Model: EL

Holyoake EL diffusers present a clean, functional, strong appearance, along with economy and high performance.

They are so versatile that this one series can often be used throughout an entire installation. They are an excellent choice for high sidewall and low sidewall, as well as ceiling applications. There is a wide selection of sizes and deflection patterns and the adjustable louvers and optional dampers add flexibility in operation. Special sizes and designs can also be furnished.

Features

- Extruded aluminium louvers are individually adjustable from the face of the diffuser.
- Three different fixing arrangements are available.
 Surface mounting in wall or ceiling openings,
 plain, or panel fixing in suspended ceiling 'T-Rails'.
- Optional Volume Control Damper is adjustable from the face of the diffuser.
 - Opposed blade design meters air precisely, from the fully open to the fully closed position, with minimum disturbance of the air pattern.
- One piece construction is used in sizes up to 900 x 900.

Construction

Extruded aluminium louvers and frame.*

* = Model EL-P Panel is 0.75 mm Steel.

Air Deflection Combinations

The various air deflection patterns in the plane of the diffuser face are shown in the diagrams. In addition, these patterns can be varied by the louver positions for different spreads and throws.

The capacity tables, pages 106D through to 109D, show the performances of the various air deflection patterns.

Note: Square diffusers can be rotated in their mountings.

Guide Weights For Core Styles Shown											
Model	Size	Approximate Weight in Kg.									
EL1-L	1000 x 150	1.75									
EL2-L	1000 x 300	2.94									
EL3-L	1000 x 300	2.97									
EL4-L	1000 x 450	4.15									

Eyelash Panel & Curved Frame –

Model: EL-P for Suspended Ceilings

Panel Diffusers

For installation in all suspended acoustic, or metal tile ceilings. Sized to fit standard ceiling module dimensions.

Module Sizes:

300 x 300 600 x 600 1200 x 600

300 x 600 600 x 900

Exposed 'T'

Actual panel dimension is 5 mm less than module nominated.

Concealed 'T'

Consult factory with details of ceiling system being used. Normally, panels are same size as ceiling tile, but depth and fixing systems vary. For approximate weights, please contact your local Holyoake branch.

Model: TLC-EL

Model TLC-EL is designed specifically for direct mounting on to Holyoake Spiroloc rigid round duct. Only a restricted range of sizes are available as shown.

When selecting from the EL selection data, allowance must be made for the neck area reduction caused by the angle between the two sides. This can be approximated by using selection data for a grille **50mm less in height** than nominal, as shown in the table. *Where mounting duct diameter is greater than double the minimum listed, this correction can be ignored.

Allowance must also be made to the throw data that is based on a ceiling effect, which is not present for diffusers mounted on exposed round ducts.

Specify duct construction at time of ordering. Volume control damper can be added at rear of diffuser but requires and additional 30mm gap from the diffuser.

Example:

Select TLC-EL, 2 way for 0.083 m³/s and

Vt 0.25 m/s, 6.4 m.

*Data shows 400 x 100 TLC-EL2L (See Page 107D).

Select a nominal size 400 x 150 TLC-EL2L

Nominal Width, W	Nominal Height, H	Minimum Duct Diameter, D	*Selection Height
300	150	300	100
400	200	400	150
500	250	500	200
600	300	600	250

Maximum nominal diffuser width: 600mm.

Guide Weights For Core Styles Shown											
Model	Size	Approximate Weight in Kg.									
EL2-L	300 x 150	0.45									
EL2-L	400 x 200	0.90									
EL2-L	500 x 250	1.13									
EL2-L	600 x 300	1.58									

Round Duct Mounting

E _ – Performance Data

		Core. Vel. m/s	0.51	1.02	1.53	2.04	2.55	3.06	3.57	4.08	4.59	5.10
Size mm	Pattern	Vel. Press.	0	1	1	3	4	6	8	10	13	16
111111		Tot. Press.	1	4	8	14	23	33	44	57	73	89
	All	m³/s	0.005	0.012	0.017	0.024	0.028	0.033	0.040	0.045	0.052	0.057
	AII	NC				14	20	24	28	32	35	38
*150 x 100	2	Throw, m	-	-	-	1.5-4.0	2.1-4.9	2.4-5.8	2.7-6.7	3.1-7.6	3.7-8.5	4.0-9.5
$Ac = 0.011 \ m^2$	1		-	-	-	2.1-4.9	2.4-5.8	3.1-7.0	3.4-8.2	3.7-9.2	4.3-10.4	4.6-11.4
	All	m³/s	0.007	0.014	0.024	0.031	0.038	0.045	0.052	0.061	0.068	0.076
	AII	NC				18	21	26	30	33	36	39
*200x100	2	Throw, m	-	-	1.5-3.4	1.8-4.3	2.1-5.2	2.7-6.4	3.1-7.3	3.4-8.2	3.7-9.2	4.3-10.1
$Ac = 0.0149 \ m^2$	1		-	-	1.5-4.0	2.1-5.2	2.7-6.4	3.1-7.6	3.7-8.8	4.6-9.8	4.6-11.0	5.2-12.2
	All	m³/s	0.009	0.019	0.028	0.038	0.047	0.056	0.066	0.076	0.085	0.094
*250 x 100	All	NC				16	22	27	31	34	37	40
*150 x 150	2	Throw, m	-	-	1.5-3.4	1.8-4.6	2.4-5.5	2.7-6.7	3.1-7.6	3.7-8.8	4.0-9.8	4.6-10.7
$Ac = 0.018 \ m^2$	1		-	-	1.8-4.3	2.4-5.5	2.7-6.7	3.4-7.9	3.7-9.2	4.3-10.4	4.9-11.6	8.8-12.8
	All	m³/s	0.012	0.024	0.038	0.050	0.061	0.073	0.085	0.099	0.111	0.123
*300 x 100	All	NC			10	17	23	28	32	35	38	41
*200 x 150	2	Throw, m	-	0.9-2.4	1.5-3.7	2.1-4.9	2.4-6.1	3.1-7.3	3.4-8.2	4.0-9.5	4.3-10.4	4.9-11.6
$Ac = 0.024 \ m^2$	1		-	1.2-3.1	1.8-4.6	2.4-5.8	3.1-7.3	3.7-8.5	4.0-9.8	4.6-11.3	5.2-12.5	5.8-13.7
	All	m³/s	0.014	0.028	0.043	0.057	0.071	0.085	0.099	0.113	0.127	0.142
	All	NC			10	18	23	28	32	36	39	42
**350 x 100	4	Throw, m	-	0.9-2.1	1.2-3.1	1.8-4.3	2.1-5.2	2.7-6.4	3.1-7.3	3.4-8.2	3.7-9.2	4.3-10.1
	3		-	0.9-2.4	1.5-3.4	1.8-4.6	2.4-5.8	2.7-6.7	3.1-7.6	3.7-8.8	4.0-9.8	4.6-10.7
$Ac = 0.027 \text{ m}^2$	2		-	0.9-2.4	1.5-4.0	2.1-5.2	2.7-6.4	3.1-7.3	3.7-8.5	4.0-9.8	4.9-11.6	4.9-11.9
	1		-	1.2-3.1	1.8-4.6	2.4-6.1	3.1-7.6	3.7-8.8	4.3-10.4	4.9-11.6	5.5-13.1	6.1-14.3

^{*} Not available as 3 or 4 way.

Notes on Performance Data

- 1. All pressures are $Pa-(N/m^2)$.
- 2. Minimum throw values refer to a terminal velocity of 0.75 m/s and maximum to 0.25 m/s, with a cooling temperature differential of 12°C. The throw may be increased, or decreased 20%, by changing the vane setting.
- 3. The NC values are based on a room absorption of 8dB, re $10^{\text{-}12}$ watts.
- 4. Data is based on an opening of about 3 mm between the frame and the first vane and progressively wider spacings between vanes away from the frame. This setting will cause the air to be discharged parallel to the face of the diffuser (horizontal discharge if installed in ceiling).
- 5. If the vanes are adjusted to the full open position, the listed NC values will be reduced by 7 and the total pressure will be 0.30 times that shown in the tables.

^{** 3} or 4 way only available in 'S' format.

		Core. Vel. m/s	0.51	1.02	1.53	2.04	2.55	3.06	3.57	4.08	4.59	5.10
Size	Pattern	Vel. Press.	0	1	1	3	4	6	8	10	13	16
mm		Tot. Press.	1	4	8	14	23	33	44	57	73	89
**400 x 100	AH	m³/s	0.017	0.033	0.050	0.066	0.083	0.099	0.116	0.132	0.149	0.165
*250 x 150	All	NC			11	18	24	29	33	37	39	42
*200 x 200	4			0.9-2.1	1.5-3.4	1.8-4.6	2.4-5.5	2.7-6.4	3.1-7.6	3.7-8.5	4.0-9.5	4.3-10.4
	3	Throw, m		0.9-2.4	1.5-3.7	1.8-4.6	2.4-5.8	3.1-7.0	3.4-7.9	4.3-9.2	4.3-10.1	4.6-11.6
$Ac = 0.032 \text{ m}^2$	2			1.2-2.7	1.5-4.0	2.1-5.2	2.7-6.4	3.1-7.6	3.7-8.8	4.3-10.1	4.6-11.3	5.2-12.5
	1			1.2-3.1	2.1-4.9	2.7-6.4	3.1-7.6	3.7-9.2	4.6-10.7	5.2-12.2	5.5-13.4	6.1-14.9
	A 11	m³/s	0.019	0.038	0.057	0.076	0.094	0.113	0.132	0.151	0.170	0.189
**450 x 100	All	NC			12	19	25	30	34	37	40	43
**300 x 150	4			0.9-2.4	1.5-3.4	1.8-4.6	2.4-5.8	2.7-6.7	3.4-7.9	3.7-8.8	4.0-9.8	4.6-10.7
	3	Throw, m		0.9-2.4	1.5-3.7	2.1-4.9	2.4-6.1	3.1-7.3	3.4-8.2	4.0-9.5	4.6-10.7	4.9-11.6
$Ac = 0.037 \text{ m}^2$	2			1.2-2.7	1.8-4.3	2.4-5.5	2.7-6.7	3.4-7.9	3.7-9.2	4.3-10.4	4.9-11.6	5.5-12.8
	1			1.5-3.4	2.1-4.9	2.7-6.7	3.4-7.9	4.0-9.5	4.6-11.0	5.2-12.5	5.8-14.0	6.4-15.6
**500 x 100	A 11	m³/s	0.021	0.043	0.064	0.085	0.106	0.127	0.149	0.167	0.191	0.212
*350 x 150	All	NC			12	19	26	30	34	38	41	44
*250 x 200	4			0.9-2.4	1.5-3.7	1.8-4.6	2.4-5.8	3.1-7.0	3.4-7.9	3.7-9.2	4.3-10.1	4.6-11.3
	3	Throw, m		0.9-2.4	1.5-4.0	2.1-5.2	2.4-6.4	3.1-7.3	3.7-8.5	4.0-9.8	4.6-11.0	4.9-11.9
$Ac = 0.041 \text{ m}^2$	2			1.2-2.7	1.8-4.3	2.4-5.8	3.1-7.0	3.4-8.2	4.0-9.5	4.6-10.7	4.9-11.9	5.5-13.4
	1			1.5-3.4	2.1-5.2	2.7-6.7	3.4-8.2	4.0-9.8	4.6-11.3	5.5-12.8	6.1-14.3	6.7-16.2
**600 x 100	A 11	m³/s	0.026	0.052	0.078	0.104	0.130	0.156	0.182	0.208	0.234	0.260
**400 x 150	All	NC			13	20	26	31	35	39	41	44
*300 x 200	4		0.6-1.2	0.9-2.4	1.5-3.7	2.1-4.9	2.4-6.1	3.1-7.3	3.7-8.5	4.0-9.5	4.6-10.7	4.9-11.9
	3	Throw, m	0.6-1.5	1.2-2.7	1.5-4.0	2.4-5.5	2.7-6.7	3.4-7.9	3.7-9.2	4.3-10.1	4.9-11.6	5.2-12.5
$Ac = 0.051 \text{ m}^2$	2		0.6-1.5	1.2-3.1	1.8-4.6	2.4-6.1	3.1-7.3	3.7-8.8	4.3-10.1	4.6-11.3	5.2-12.5	5.8-14.0
	1		0.6-1.8	1.5-3.7	2.4-5.5	3.1-7.0	3.7-8.8	4.3-10.4	4.9-11.9	5.5-13.4	6.4-15.3	7.0-17.1
	A 11	m³/s	0.028	0.059	0.087	0.118	0.146	0.175	0.205	0.234	0.264	0.293
**450 x 150	All	NC			13	21	27	32	36	39	42	45
*250 x 250	4		0.6-1.2	1.2-2.7	1.5-4.0	2.1-5.2	2.7-6.4	3.1-7.6	3.7-8.5	4.0-9.8	4.6-11.0	5.2-12.2
	3	Throw, m	0.6-1.5	1.2-2.7	1.8-4.3	2.4-5.5	2.7-6.7	3.4-8.2	4.0-9.5	5.3-10.4	4.9-11.9	5.5-13.1
$Ac = 0.057 \text{ m}^2$	2		0.6-1.5	1.2-3.1	1.8-4.6	2.4-6.1	3.1-7.6	3.7-8.8	4.3-10.4	4.9-11.6	5.5-13.1	6.1-14.3
	1		0.6-1.8	1.5-3.7	2.4-5.5	3.1-7.3	3.7-9.2	4.6-10.7	5.2-12.5	5.8-14.0	6.4-15.6	7.3-17.4
**750 x 100	AH	m³/s	0.033	0.066	0.099	0.132	0.165	0.198	0.231	0.264	0.297	0.332
**500 x 150	All	NC			14	21	27	32	36	40	42	45
*350 x 200	4		0.6-1.5	1.2-2.7	1.5-4.0	2.1-5.2	2.7-6.4	3.1-7.6	3.7-8.8	4.3-10.1	4.6-11.3	5.2-12.5
	3	Throw, m	0.6-1.5	1.2-2.7	1.8-4.3	2.4-5.8	3.1-7.0	3.4-8.2	4.0-9.8	4.6-11.0	5.2-12.2	5.5-13.4
$Ac = 0.065 m^2$	2		0.6-1.8	1.5-3.4	2.1-4.9	2.7-6.4	3.1-7.6	3.7-9.2	4.6-10.7	5.2-12.2	5.5-13.4	6.1-14.9
	1		0.9-2.1	1.5-4.0	2.4-5.8	3.1-7.6	3.7-9.2	4.6-11.0	5.5-12.8	6.1-14.3	6.7-16.2	7.6-18.0
**600 x 150	AII	m³/s	0.038	0.076	0.116	0.153	0.191	0.229	0.267	0.307	0.345	0.382
**400 x 200	All	NC			15	22	28	33	37	40	43	46
**350 x 250	4		0.6-1.5	1.2-2.7	1.8-4.3	2.4-5.5	2.7-6.7	3.4-7.9	3.7-9.2	4.3-10.4	4.9-11.6	5.5-13.1
	3	Throw, m	0.6-1.5	1.2-2.7	1.8-4.3	2.4-5.5	2.7-7.6	3.4-7.9	3.7-9.2	4.3-10.4	4.9-11.6	5.5-13.1
$Ac = 0.075 \text{ m}^2$	2		0.6-1.8	1.5-3.4	2.1-4.9	2.7-6.7	3.4-7.9	4.0-9.5	4.6-11.0	5.2-12.5	5.8-14.0	6.4-15.6
	1		0.9-2.1	1.5-4.0	2.4-6.1	3.4-7.9	4.0-9.8	4.9-11.6	5.5-13.4	6.1-14.9	7.0-16.8	7.9-18.9
	A.II	m³/s	0.040	0.083	0.123	0.165	0.205	0.245	0.288	0.328	0.371	0.411
**450 x 200	All	NC			15	22	28	33	37	40	43	46
*300 x 300	4		0.6-1.5	1.2-3.1	1.8-4.3	2.4-5.8	3.1-7.0	3.4-8.2	4.0-9.5	4.6-10.7	4.9-11.9	5.5-13.1
	3	Throw, m	0.6-1.5	1.2-3.1	1.8-4.6	2.4-6.1	3.1-7.6	3.7-8.8	4.3-10.1	4.9-11.6	5.5-12.8	6.1-14.3
$Ac = 0.080 \text{ m}^2$	2		0.6-1.8	1.5-3.4	2.1-5.2	2.7-6.7	3.4-8.2	4.0-9.8	4.6-11.3	5.5-12.8	6.1-14.3	6.7-15.9
	1		0.9-2.1	1.8-4.3	2.4-6.1	3.4-7.9	4.0-9.8	4.9-11.9	5.8-13.7	6.4-15.3	7.0-17.1	7.9-19.2
									•	*		

^{*} Not available as 3 or 4 way.

^{** 3} or 4 way only available in 'S' format.

E _ - Performance Data

		Core. Vel. m/s	0.51	1.02	1.53	2.04	2.55	3.06	3.57	4.08	4.59	5.10
Size	Pattern	Vel. Press.	0	1	1	3	4	6	8	10	13	16
mm		Tot. Press.	1	4	8	14	23	33	44	57	73	89
**750 x 150		m³/s	0.047	0.097	0.144	0.194	0.241	0.288	0.338	0.395	0.434	0.481
**500 x 200	All	NC			16	23	29	34	38	41	44	47
**400 x 250	4		0.6-1.5	1.2-3.1	1.8-4.6	2.4-5.8	3.1-7.3	3.7-8.5	4.0-9.8	4.6-11.0	5.2-12.5	5.8-13.7
**350 x 300	3	Throw, m	0.6-1.8	1.2-3.1	2.1-4.9	2.7-6.4	3.1-7.6	3.7-9.2	4.6-10.7	4.9-11.9	5.5-13.4	6.1-14.6
	2		0.6-1.8	1.5-3.7	2.1-5.2	3.1-7.0	3.7-8.5	4.3-10.1	4.9-11.9	5.5-13.1	6.1-14.9	7.0-16.8
$Ac = 0.094 \text{ m}^2$	1		0.9-2.1	1.8-4.3	2.7-6.4	3.4-8.2	4.3-10.4	5.2-12.2	5.8-14.0	6.7-15.9	7.6-18.0	8.2-19.8
**600 x 200	A 11	m³/s	0.054	0.109	0.163	0.217	0.271	0.326	0.380	0.434	0.491	0.543
**450 x 250	All	NC			16	24	30	34	38	42	45	48
**400 x 300	4		0.6-1.5	1.2-3.1	1.8-4.6	2.4-6.1	3.1-7.6	3.7-8.8	4.3-10.1	4.9-11.6	5.5-12.8	5.8-14.0
	3	Throw, m	0.6-1.8	1.5-3.4	2.1-4.9	2.7-6.4	3.4-7.9	4.0-9.5	4.6-11.0	5.2-12.5	5.8-13.7	6.4-15.3
$Ac = 0.107 \text{ m}^2$	2		0.6-1.8	1.5-3.7	2.4-5.5	3.1-7.0	3.7-8.8	4.3-10.4	5.2-12.2	5.8-13.7	6.4-15.3	7.0-17.1
	1		0.9-2.4	1.8-4.6	2.7-6.7	3.7-8.5	4.6-10.7	5.2-12.5	6.1-14.3	6.7-16.5	7.6-18.3	8.5-20.7
**900 x 150	All	m³/s	0.059	0.118	0.177	0.236	0.295	0.354	0.413	0.472	0.529	0.592
**500 x 250	AII	NC			16	24	30	35	39	42	45	48
350 x 350	4		0.6-1.5	1.2-3.1	1.8-4.6	2.4-6.1	3.1-7.6	3.7-8.8	4.3-10.4	4.9-11.6	5.5-13.1	6.1-14.3
	3	Throw, m	0.6-1.8	1.5-3.4	2.1-4.9	2.7-6.7	3.4-8.2	4.0-9.8	4.6-11.3	5.2-12.5	5.8-14.0	6.4-15.6
$Ac=0.116m^2$	2		0.6-1.8	1.5-3.7	2.4-5.5	3.1-7.3	3.7-9.2	4.6-10.7	5.2-12.5	5.8-14.0	6.4-15.6	7.3-17.4
	1		0.9-2.4	1.8-4.6	2.7-6.7	3.7-8.8	4.6-10.7	5.5-12.8	6.1-14.6	7.0-16.8	7.9-18.9	8.8-21.0
	All	m³/s	0.064	0.127	0.191	0.255	0.319	0.382	0.446	0.510	0.576	0.637
400 x 300	All	NC			17	24	30	35	39	42	45	48
450 x 300	4		0.6-1.8	1.2-3.1	2.1-4.9	2.7-6.4	3.1-7.6	3.7-9.2	4.6-10.7	4.9-11.9	5.5-13.4	6.1-14.6
	3	Throw, m	0.6-1.8	1.5-3.4	2.1-5.2	2.7-6.7	3.4-8.2	4.0-9.8	4.6-11.3	5.5-12.8	6.1-14.3	6.7-15.9
$Ac = 0.125m^2$	2		0.9-2.1	1.5-4.0	2.4-5.8	3.1-7.6	3.7-9.2	4.6-11.0	5.5-12.8	6.1-14.3	6.7-16.2	7.6-18.0
	1		0.9-2.4	1.8-4.6	3.1-7.0	3.7-8.8	4.6-11.0	5.5-13.1	6.4-15.3	7.0-17.1	7.9-19.2	8.8-21.4
**750 x 200	AII	m³/s	0.073	0.144	0.217	0.288	0.361	0.434	0.505	0.576	0.651	0.722
**600 x 250		NC			17	25	31	36	40	43	46	49
500 x 300	4		0.6-1.8	1.5-3.4	2.1-4.9	2.7-6.4	3.4-7.9	4.0-9.5	4.6-11.0	5.2-12.2	5.8-13.7	6.4-15.3
450 x 350	3	Throw, m	0.6-1.8	1.5-3.7	2.1-5.2	3.1-7.0	3.7-8.5	4.3-10.1	4.9-11.9	5.5-13.4	6.1-14.9	6.7-16.5
400 x 400	2		0.9-2.1	1.5-4.0	2.4-5.8	3.1-7.6	4.0-9.8	4.6-11.3	5.5-13.0	6.1-14.6	7.0-16.8	7.6-18.3
$Ac = 0.142 m^2$	1		0.9-2.4	2.1-4.9	3.1-7.0	3.7-9.2	4.6-11.3	5.5-13.4	6.4-15.6	7.3-17.7	8.2-19.8	9.2-22.3
**900 x 200	All	m³/s	0.086	0.172	0.257	0.345	0.430	0.515	0.599	0.689	0.774	0.859
**750 x 250		NC			18	26			40	44	47	·
600 x 300	4		0.6-1.8	1.5-3.4	2.1-5.2	2.7-6.7	3.4-8.2	4.0-9.8	4.6-11.3	5.5-12.8	6.1-14.3	6.7-16.2
500 x 350	3	Throw, m	0.6-1.8	1.5-3.7	2.4-5.5	3.1-7.3	3.7-8.8	4.6-10.7	5.2-12.2	5.8-13.7	6.4-15.6	7.3-17.4
450 x 400	2		0.9-2.1	1.8-4.3	2.4-6.1	3.4-8.2	4.3-10.1	4.9-11.9	5.8-13.7	6.4-15.3	7.3-17.4	7.9-19.2
$Ac = 0.169 \text{ m}^2$	1		0.9-2.4	2.1-4.9	3.1-7.3	4.0-9.8	4.9-11.9	5.8-14.0	6.7-16.5	7.6-18.3	8.5-20.7	9.8-23.2
600 x 350	AII	m³/s	0.099	0.198	0.297	0.397	0.496	0.595	0.694	0.793	0.892	0.991
500 x 400		NC	0.0.1.	4 = 5 =	19	26	32	37	41	44	47	50
450 x 450	4	-	0.6-1.8	1.5-3.7	2.4-5.5	3.1-7.0	3.7-8.5	4.3-10.4	4.9-11.9	5.5-13.4	6.1-14.9	7.0-16.8
	3	Throw, m	0.9-2.1	1.5-4.0	2.4-5.8	3.1-7.6	3.7-9.2	4.6-11.0	5.5-12.8	6.1-14.3	6.7-16.2	7.6-18.0
$Ac = 0.195m^2$	2		0.9-2.1	1.8-4.3	2.7-6.4	3.7-8.5	4.3-10.4	5.2-12.2	5.8-14.0	6.7-15.9	7.6-18.0	8.5-20.1
**oc+	1	2.	1.2-2.7	2.1-5.2	3.1-7.6	4.3-10.1	5.2-12.2	6.1-14.6	7.0-16.8	7.9-18.9	8.8-21.4	10.1-24.4
**900 x 250	All	m³/s	0.111	0.222	0.333	0.444	0.557	0.666	0.774	0.887	1.000	1.112
750 x 300		NC	0.0.	4 = 5 =	19	27	33	37	41	45	48	51
600 x 400	4	-	0.6-1.8	1.5-3.7	2.4-5.5	3.1-7.3	3.7-8.8	4.6-10.7	5.2-12.2	5.8-13.7	6.4-15.3	7.3-17.4
500 x 450	3	Throw, m	0.9-2.1	1.5-4.0	2.4-6.1	3.1-7.6	4.0-9.5	4.6-11.3	5.5-13.1	6.1-14.9	7.0-16.8	7.6-18.3
	2		0.9-2.4	1.8-4.6	2.7-6.7	3.7-8.5	4.6-10.7	5.5-12.8	6.1-14.6	6.7-16.5	7.6-18.6	8.5-20.7
$Ac = 0.218 \text{m}^2$	1		1.2-2.7	2.1-5.2	3.4-7.9	4.3-10.4	5.5-12.8	6.1-14.9	7.3-17.4	8.2-19.5	9.2-22.0	10.4-25.0

 $[\]ensuremath{^{**}}$ 3 or 4 way only available in 'S' format.

108D — © Holyoake by Price – 2023

Performance Data — **E**

Size		Core. Vel. m/s	0.51	1.02	1.53	2.04	2.55	3.06	3.57	4.08	4.59	5.10
mm	Pattern	Vel. Press.	0	1	1	3	4	6	8	10	13	16
		Tot. Press.	1	4	8	14	23	33	44	57	73	89
900 x 300	A 11	m³/s	0.127	0.253	0.381	0.505	0.633	0.762	0.887	1.016	1.143	1.270
750 x 350	All	NC			20	27	33	38	42	45	48	51
600 x 450	4		0.9-2.1	1.5-4.0	2.4-5.8	3.1-7.6	3.7-9.2	4.6-11.0	5.5-12.8	6.1-14.3	6.7-15.9	7.6-18.0
500 x 500	3	Throw, m	0.9-2.1	1.8-4.3	2.4-6.1	3.4-7.9	4.3-10.1	4.9-11.9	5.8-13.7	6.4-15.3	7.3-17.4	7.9-19.2
Ī	2		0.9-2.4	1.8-4.6	2.7-6.7	3.7-8.8	4.6-11.0	6.1-14.6	6.1-14.9	7.0-17.1	7.9-18.9	8.8-21.4
$Ac = 0.249 \text{ m}^2$	1		1.2-2.7	2.4-5.5	3.4-8.2	4.6-10.7	5.5-13.1	6.4-15.6	7.6-18.0	8.5-20.1	9.5-22.9	10.7-25.9
900 x 350		m³/s	0.149	0.297	0.446	0.595	0.746	0.892	1.046	1.195	1.345	1.494
750 x 400	All	NC		10	20	28	34	39	43	46		52
600 x 500	4		0.9-2.1	1.5-4.0	2.4-5.8	3.4-7.9	4.0-9.5	4.6-11.3	5.5-13.1	6.1-14.9	7.0-16.8	7.9-18.9
	3	Throw, m	0.9-2.1	1.8-4.3	2.7-6.4	3.4-8.2	4.3-10.4	5.2-12.2	5.8-14.0	6.7-15.9	7.6-18.0	8.5-20.1
$Ac = 0.293 \text{ m}^2$	2		0.9-2.4	2.1-4.9	3.1-7.3	3.7-9.2	4.9-11.6	5.8-13.7	6.4-15.6	7.3-17.7	8.2-19.8	9.2-22.3
	1		1.2-3.1	2.4-5.8	3.7-8.5	4.6-11.0	5.8-13.7	6.7-16.2	7.9-18.9	8.8-21.0	10.1-24.1	11.3-27.2
900 x 400		m³/s	0.172	0.345	0.519	0.689	0.859	1.037	1.210	1.383	1.556	1.729
750 x 450	All	NC		11	21	29	35	39	43	47	50	53
600 x 600	4		0.9-2.1	1.8-4.3	2.4-6.1	3.4-8.2	4.3-10.1	4.9-11.9	5.8-13.7	6.4-15.3	7.3-17.4	8.2-19.5
	3	Throw, m	0.9-2.4	1.8-4.6	2.7-6.7	3.7-8.5	4.6-10.7	5.5-12.8	6.1-14.6	7.0-16.8	7.6-18.6	8.5-20.7
$Ac = 0.339 \text{ m}^2$	2		0.9-2.4	2.1-4.9	3.1-7.3	4.0-9.8	4.9-11.9	5.8-14.0	6.7-16.5	7.6-18.3	8.5-20.7	9.8-23.2
	1		1.2-3.1	2.4-6.1	3.7-8.8	4.6-11.3	5.8-14.0	7.0-16.8	8.2-19.5	9.2-22.0	10.4-25.0	11.6-28.1
		m³/s	0.191	0.382	0.576	0.765	0.953	1.151	1.342	1.534	1.726	1.918
900 x 450	All	NC		11	22	29	35	40	44	47	50	53
750 x 500	4		0.9-2.1	1.8-4.3	2.7-6.4	3.4-8.2	4.3-10.4	5.2-12.2	5.8-14.0	6.7-15.9	7.6-18.0	8.5-20.1
ľ	3	Throw, m	0.9-2.4	1.8-4.6	2.7-6.7	3.7-8.8	4.6-11.0	5.5-13.1	6.1-14.9	7.0-17.1	7.9-19.2	8.8-21.4
$Ac = 0.376 \text{ m}^2$	2		1.2-2.7	2.1-5.2	3.1-7.6	4.0-9.8	5.2-12.2	6.1-14.3	7.0-16.8	7.9-18.9	8.8-21.4	10.1-24.1
	1		1.2-3.1	2.4-6.1	3.7-9.2	4.9-11.9	6.1-14.3	7.3-17.4	8.5-20.1	9.5-22.6	10.7-25.6	11.9-28.7
		m³/s	0.222	0.446	0.670	0.892	1.117	1.340	1.564	1.787	2.010	2.234
900 x 500	AII	NC		12	22	30	36	40	44	48	46	54
750 x 600	4		0.9-2.4	1.8-4.6	2.7-6.7	3.7-8.5	4.6-10.7	5.5-12.8	6.1-14.6	6.7-16.5	7.6-18.6	8.5-20.7
	3	Throw, m	0.9-2.4	2.1-4.9	3.1-7.0	3.7-9.2	4.9-11.6	5.8-13.7	6.7-15.9	7.3-17.7	8.5-20.1	9.5-22.6
$Ac = 0.438 \text{ m}^2$	2		1.6-2.7	2.4-5.2	3.4-7.9	4.3-10.4	5.5-12.8	6.1-14.9	7.3-17.4	8.2-19.5	9.2-22.3	10.4-25.0
	1		1.5-3.4	2.7-6.4	4.0-9.5	5.2-12.2	6.1-14.9	7.6-18.0	8.5-20.7	9.8-23.8	11.3-26.8	12.5-29.9
		m³/s	0.274	0.548	0.826	1.104	1.379	1.655	1.931	2.207	2.483	2.759
900 x 600	AII	NC		13	23	31	37	41	45	49		55
750 x 750	4		0.9-2.4	1.8-4.6	3.1-7.0	3.7-9.2	4.6-11.3	5.5-13.4	6.4-15.6	7.3-17.4	8.2-19.5	9.2-22.0
	3	Throw, m	1.2-2.7	2.1-4.9	3.1-7.6	4.0-9.8	5.2-12.2	6.1-14.3	7.0-16.8	7.6-18.6	8.8-21.4	9.8-23.8
$Ac = 0.541 \text{ m}^2$	2		1.2-2.7	2.4-5.5	3.4-8.2	4.6-10.7	5.5-13.4	6.7-15.9	7.6-18.3	8.5-20.7	9.8-23.5	11.0-26.5
	1		1.5-3.4	2.7-6.7	4.0-9.8	5.5-12.8	6.7-15.9	7.9-18.9	9.2-22.0	10.4-25.0	11.9-28.4	13.4-32.0
		m³/s	0.338	0.675	1.020	1.360	1.698	2.038	2.378	2.717	3.057	3.396
	AII	NC		14	24	31	37	42	46	50	53	56
900 x 750	4		0.9-2.4	2.1-4.9	3.1-7.3	4.0-9.8	4.9-11.9	5.8-14.0	6.7-16.5	7.6-18.3	8.5-20.7	9.8-23.2
	3	Throw, m	1.6-2.7	2.1-5.2	3.4-7.9	4.3-10.4	5.5-12.8	6.4-15.3	7.3-17.4	8.2-19.8	9.2-22.3	10.4-25.0
$Ac = 0.666 \text{ m}^2$	2	,	1.6-3.1	2.4-6.1	3.7-8.8	4.6-11.3	5.8-14.0	7.0-16.8	8.2-19.5	9.2-22.0	10.4-25.0	11.6-28.1
. 2.000	1		1.5-3.7	3.1-7.0	4.3-10.4	5.5-13.4	7.0-16.8	8.5-20.1	9.8-23.5	11.0-26.5	12.5-29.9	14.0-33.6
		m³/s	0.408	0.817	1.227	1.636	2.045	2.454	2.863	3.272	3.681	4.090
	AII	NC		14	25	32	38	43	47	51	53	56
900 x 900	4		1.2-2.7	2.1-5.2	3.1-7.6	4.3-10.1	5.2-12.5	6.1-14.9	7.0-17.1	8.2-19.5	9.2-21.7	10.1-24.4
300 A 300	3	Throw, m	1.2-3.1	2.4-5.5	3.4-8.2	4.6-10.7	5.5-13.4	6.7-15.9	7.6-18.3	8.5-20.7	9.8-23.5	11.0-26.5
$Ac = 0.802 \text{ m}^2$	2		1.2-3.1	2.4-6.1	3.7-9.2	4.9-11.9	6.1-14.6	7.3-17.7	8.5-20.4	9.8-23.2	11.0-26.2	12.2-29.3
	-		3.1	3.1-7.3	4.6-11.0	5.8-14.0	7.3-17.7	8.8-21.4	10. 1-24.4	11.6-27.8	13.1-31.4	14.6-35.4

BHC, DFR, DS & JD

Product Ordering Key and Suggested Specifications

High Capacity Barrel Diffusers shall be Holyoake Series BHC. They shall be designed to be mounted into a supply plenum that may contain a number of BHC units, which will provide high capacity and long throw diffusion. Adjustment is available to change the vertical and horizontal throw and spread.

Series BHC shall be finished in Mill Aluminium and fitted with accessories where indicated.

All shall be as manufactured by Holyoake.

Displacement Floor Mounted Round Diffusers shall be Holyoake Series DFR. They shall be designed to mount into a supply plenum at floor level and to provide an even distribution of air flow at low velocity, thereby creating a draft-less environment. Pressure drop through the displacement diffusers will be such to provide balance within the supply plenum, while being low enough to generate very low noise levels.

Series DFR Displacement Diffusers shall be circular. All shall be as manufactured by Holyoake.

Displacement Step Mounted Diffusers shall be Holyoake Series DS. They shall be designed to mount into a supply plenum at floor level and to provide an even distribution of air flow at low velocity, thereby creating a draft-less environment. Pressure drop through the displacement diffusers will be such to provide balance within the supply plenum, while being low enough to generate very low noise levels.

Series DS Displacement Step Mounted Diffusers are designed to be face fixed, or supplied with the Holyoake Removable Core System (25 mm flange only).

All shall be as manufactured by Holyoake.

Circular Jet Diffusers shall be Holyoake Model JD constructed from spun aluminium cones. JD Jet Diffusers shall be capable of operating in either diffused, or jet air pattern configurations. The air patterns shall be achieved by rotating the cone assembly through 180 degrees. JD Jet Diffusers shall be complete with a mounting system suitable for wall, or ceiling applications.

Series JD shall be finished in powder coat and fitted with accessories where indicated.

All shall be as manufactured by Holyoake.

Note

For ceiling applications of JD Diffusers, Seismic Restraints would be required, but not supplied.

JND, EL, EL-P, FSD & TLC-EL

Product Ordering Key and Suggested Specifications

Holyoake Jet nozzle diffusers shall be of spun aluminium construction with a steel concealed mounting system. They shall be designed to supply large air quantities over large throws.

Series JND shall be finished in powder coat and all shall be as manufactured by Holyoake.

Circular floor diffusers shall be Holyoake FSD Series manufactured in glass filled polycarbonate, in self-coloured grey, or black, as standard. Nominal FSD diffuser size shall be 220mm in diameter. The FSD diffuser shall contain a flow regulation damper and the fascia is complete with 'Min/Max' indication.

Series FSD mounting clamp and trim ring shall also be manufactured in glass filled polycarbonate. FSD diffusers shall contain a dust/dirt collection basket.

All Series FSD materials used are fire retardant and the diffusers shall resist permanent deformation when subject to point loads up to 500 Kg.

All shall be as manufactured by Holyoake.

Surface Mounted Eyelash Type

EL surface mounted diffusers shall be of the "Eyelash", or curved blade type. They shall be of extruded aluminium construction, with each blade individually adjustable from the face. Optional opposed blade damper can be adjusted through the face of the diffuser.

All shall be as manufactured by Holyoake

Panel Lay-in Eyelash Type

EL-P Panel Lay-in diffusers shall be of the "Eyelash", or curved blade type. They shall be of extruded aluminium construction, with each blade individually adjustable from the face. Optional opposed blade damper can be adjusted through the face of the diffuser.

All shall be as manufactured by Holyoake.

Curved Frame Eyelash Type

TLC-EL diffusers shall be of the "Curved Frame Eyelash" type, with curved blades. They shall be of extruded aluminium construction, with each blade adjustable from the face. Optional opposed blade damper can be adjusted through the face of the diffuser.

All shall be as manufactured by Holyoake.

Note

For ceiling applications of EL Diffusers, Seismic Restraints would be required, but not supplied.

CFP	Ceiling Fixed Pattern - Radial Swirl	129 - 132D
CFPP	Ceiling Fixed Pattern - Pressed (Steel) Swirl	133 - 136D
CRS	Ceiling Radial Swirl	114 - 115D
CSS	Ceiling Slot Swirl	116 - 117D
CSS - VAV	Ceiling Slot Swirl VAV Diffuser	118 - 120D
SFRA	Ceiling Fixed Pattern - Radial (Aluminium) Swirl	137 - 138D
Ordering Key ar	nd Specification	139 - 140D

- High induction swirl diffusers with radial diffusion pattern
- Square and round face options
 Steel face plate or all aluminium construction
- UV stabilised and fire rated polymer

- construction, fixed or adjustable pattern blades Pressed steel or aluminium fixed pattern blades
- Full range of air distribution patterns VAV, Low Profile VAV and Electronic VAV
- Evenflow cushion head plenums available

CRS - Ceiling Radial Swirl Diffuser

Model: CRS

The Holyoake CRS range of Radial Swirl Diffusers have been designed to provide high quality indoor air diffusion. The CRS comprises of radial deflection blades that produce a circular airflow pattern with a very strong ceiling effect. This diffuser is ideal for VAV applications, because the ceiling effect is maintained for minimal through to very high flowrates.

Ideal for large rooms, call centres and waiting rooms.

The CRS is able to achieve high room air diffusion quality due to the strong induction swirl pattern it produces. Strong induction draws room air up into the supply air flow path, which results in mixing at high level, reducing draughts and uneven temperature gradients.

Installation

Installation is simple due to the square lay-in type design. The diffuser can be placed into the T-Rail system quickly and easily and the supply duct attached. Alternatively the diffuser may be conventionally mounted, or held using one of the Holyoake mounting systems, such as the T-Rail Support Frame. The supply air can be fed vertically onto the back of the diffuser, or through a specifically designed side entry box.

Specifically Designed Swirl Inducing Side Entry Box

Construction

The CRS is constructed entirely from aluminium metal. It is a lightweight, but robust diffuser that can be fitted easily into the ceiling space.

Features

- Strong Ceiling Effect
- Radial Diffusion Pattern
- High Induction Swirl
- Easy Lay-in Installation
- Attractive Appearance

Note: The CRS300 can be mounted in a 595 x 595 panel for T-Rail mounting, see below.

	Sizes Available (1	Neck Size) (mm)			
	CRS300	CRS450			
A	295	445			
В	445	595			
	Weights in Kg.				
Diffuser	0.9	1.45			
CRS/Panel	2.00	N/A			
Galv Box	4	6.5			
Prem Box	1.5	2.5			

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

Performance Data – CRS

Model: CRS300 Ceiling Radial Swirl Diffuser

300 x 300 Nominal Neck

Duct Size	Flowrate (I/s)	25	50	75	100	125	150	200
	Static Pressure (Pa)	2	6	12	23	40	55	95
150	Throw (m)	na - na - 0.8	na - 0.6 - 1.8	0.6 - 1.5 - 2.2	1.3 - 2.4 - 3.3	1.6 - 2.7 - 3.4	1.9 - 3.0 - 3.9	2.2 - 3.3 - 4.2
	NC			32	37	42	47	54
	Static Pressure (Pa)	2	4	9	15	24	34	60
200	Throw (m)	na - 0.45 - 0.75	na - 0.6 - 1.3	0.65 - 0.9 - 1.8	0.85 - 1.5 - 2.2	1.4 - 1.8 - 2.5	1.7 - 2.4 - 3.3	2.1 - 2.7 - 3.9
	NC			23	26	31	36	42
	Static Pressure (Pa)	1	4	9	15	23	33	58
250	Throw (m)	na - 0.3 - 0.7	0.4 - 0.7 - 1.0	0.6 - 0.9 - 1.8	0.9 - 1.2 - 2.0	1.4 - 1.8 - 2.5	1.6 - 2.4 - 3.0	2.0 - 2.6 - 3.9
	NC	-	-	-	24	29	34	40

Model: CRS450 Ceiling Radial Swirl Diffuser

450 x 450 Nominal Neck

Duct Size	Flowrate (I/s)	50	100	150	200	300	400	500	600
	Static Pressure (Pa)	5	15	32					
150	Throw (m)	na – na - 0.5	na – 0.6 – 1.2	0.3 – 1.0 – 1.8					
	NC	21	28	39					
	Static Pressure (Pa)	1	5	11	18	40	72		
200	Throw (m)	na – na – 0.3	na – 0.5 – 1.0	0.3 – 0.9 – 1.8	0.6 – 1.2 – 2.1	1.5 – 2.1 – 3.0	2.1 – 2.9 – 3.6		
	NC	22	26	32	36	47	56		
	Static Pressure (Pa)	1	2	5	8	19	33	51	
250	Throw (m)	na – na – 0.3	na – 0.5 – 1.0	0.3 – 0.9 – 1.8	0.6 – 1.2 – 2.1	1.5 – 2.0 – 3.0	2.1 – 2.7 – 3.6	2.1 – 3.0 – 4.2	
	NC	15	21	24	27	39	47	54	
	Static Pressure (Pa)	-	2	3	6	11	21	30	43
300	Throw (m)	-	0.2 - 0.5 – 1.0	0.3 – 0.9 – 1.8	0.6 – 1.1 – 2.1	1.4 – 2.0 – 3.0	2.1 – 2.3 – 3.6	2.1 – 3.0 – 4.2	2.5 – 3.6 – 4.6
	NC		17	22	23	34	41	48	53
	Static Pressure (Pa)	-	1	2	5	10	17	26	41
350	Throw (m)	-	0.2 – 0.5 – 1.0	0.3 - 0.8 - 1.8	0.6 – 1.1 – 2.1	1.1 – 1.8 – 3.0	1.8 - 2.3 - 3.3	1.8 – 3.0 – 4.2	2.5 – 3.6 – 4.6
	NC		14	21	23	31	38	46	51

Options CRSP

The CRS may be supplied with a perforated face plate to provided a less open appearance. See performance notes for the effect on the performance data.

CR	SP	Weights in Kg.				
∆Ps	x1.2		CRS300	CRS450		
Throw	x 1.0	CRSP	0.83	1.31		
NC	+3	'T' Rail Frame	0.46	0.64		

Model: CRSP

'T' Rail Support Frame

Lay in application — Special 'T' Rail Frame Option available for Surface Mounted applications.

Notes on Performance Data

- 1. Performance data is based on a specifically designed side entry box.
- 2. Listed throw distances are to a terminal velocity (Vt) of 0.75 0.5 0.25 m/s.
- 3. The NC values are based on a room absorption of 10dB re $10^{\text{-}12}\,\text{Watts}.$
- 4. "Duct Size' in tables above are plenum inlet sizes.
- 5. CRSP performance can be approximated by using the CRSP table.

CSS – Ceiling Slot Swirl Diffuser

Model: CSS

The Holyoake CSS range of Square and Round Face Ceiling Slot Swirl Diffusers have been designed to provide attractive, un-obtrusive, high quality indoor air diffusion. The CSS is comprised of slots in a radial angled pattern that produce a circular swirling airflow.

The CSS is able to achieve high room air diffusion quality, due to the swirling motion of the discharge. Strong Induction draws room air up into the supply air flow path, which results in mixing at high level, reducing draughts and uneven temperature gradients.

The airflow pattern from the CSS Ceiling Slot Swirl Diffuser can be easily adjusted from the diffuser face, without the need to access the rear of the diffuser. By rotating the pattern blades the airflow can be directed to an external (horizontal), reduced throw (horizontal), or vertical discharge swirl. It can also be used for exhaust situations by either removing the pattern blades, or adjusting them to the horizontal position.

Other directional airflow patterns can be achieved by blade adjustment, refer to your local Holyoake Branch.

CSS Square Model Installation

Installation is simple due to the square lay-in type design. The diffuser can be placed into a 'T-rail' system quickly and easily and the supply duct attached. The supply air can be fed vertically onto the back of the diffuser, or through a specifically designed side entry box. The inlet duct is available at 150, 200 or 250 mm diameter, see table on following page.

CSSR Circular Model Installation

Installation of this model is also made easy, when supplied with a Top Entry round cushion head plenum. The diffuser outer edge can be flush mounted against the ceiling surface.

CSSF Fixed Model

The CSSF is a fixed non-adjustable model of the CSS diffuser. The product still achieves the same high induction and ceiling effect as the adjustable model. Performance data is identical to CSS with pattern blades.

Construction

The CSS face plate is constructed of powder coated zinc coated steel (aluminium option available, contact your local Holyoake branch) and the air pattern elements from a tough UV stabilized and fire rated engineering polymer. These are available in white or black. They have a unique slightly convex profile which has been designed to maximize the free area, generate a strong ceiling effect and provide low noise operation over a wide range of flow rates.

A part blanked Low Volume blade is also available for CSS16.

Nominal Square Face sizes of 295 x 295 mm for CSS8, 445 x 445 mm for CSS16 and CSS21; and 595 x 595 mm for all models are available, to lay in to 'T' Rail ceiling grids.

Nominal Circular Face models are available in 500 mm for CSS8, CSS16 and CSS21; and in 615 mm for all models.

Features

- Unique Convex Profile Adjustable Pattern Blades.
- Infinite Range of Throw Patterns.
- Low Noise Operation.
- Strong Ceiling Effect.
- · High Induction Swirl.
- Easy Lay-in Installation.

Performance Data -

Dimensional Details

	A Nominal	100
14 mm -	Top Entry Box	
10mm#	U	4 45 mm +

Side Entry Box Dimension (mm)									
Model	A	В	С	D	'T' RAIL				
CSS8	150	285	285	295	300 - 600				
CSS16	200	440	300	445	450 or 600				
CSS21	250	440	350	445	450 or 600				
CSS24	250	585	350	595	600				
CSS48	250	585	350	595	600				

Top Entry Box Dimension (mm)									
Model	A	В	С	D					
CSS8	150	477 or 592	150	500 or 615					
CSS16	200	477 or 592	150	500 or 615					
CSS21	250	477 or 592	150	500 or 615					
CSS24	250	592	150	615					
CSS48	250	592	150	615					

		Perfo	rmance	Data				
Model	Flowrate (I/s)	25	50	75	100	125	150	175
	Static Pressure (Pa)	8	26	56				
	Total Pressure (Pa)	11	32	61				
CSS8	0.75m/s	0.3	0.6	0.9				
	Throw (m) 0.50m/s	0.5	0.8	1.3				
	0.25m/s	0.8	1.4	1.9				
	NC	20	29	36				
	Static Pressure (Pa)	-	4	9	17	26	37	
	Total Pressure (Pa)	-	7	15	27	41	60	
CSS16	0.75m/s	-	N/A	0.4	0.7	0.8	0.9	
	Throw (m) 0.50m/s	-	0.5	0.6	1.0	1.1	1.4	
	0.25m/s	-	0.8	1.2	1.4	1.7	2.0	
	NC	-	-	21	28	35	39	
	Static Pressure (Pa)	-	3	7	18	23	28	33
	Total Pressure (Pa)	-	5	9	25	29	34	45
CSS21	0.75m/s	-	N/A	0.4	0.5	0.7	0.8	0.9
	Throw (m) 0.50m/s	-	0.6	0.7	0.9	1.1	1.3	1.5
	0.25m/s	-	1.0	1.4	1.7	1.9	2.1	2.4
	NC	-	-	21	27	33	36	38

Adjustable Pattern Blade Settings Viewed from diffuser outer edge.

Horizontal Swirl - Reduced Throws $= 3-5 \, \text{mm}$

					F	Performa	ince Data	a							
Model	Flowrate (I/s)	25	50	75	100	125	150	175	200	225	250	275	300	350	400
	Static Pressure (Pa)	-	2	3	5	8	10	14	18	23	29	35	40		
	Total Pressure (Pa)	-	3	6	10	16	20	27	36	46	55	68	80		
CSS24	0.75m/s	-	N/A	N/A	N/A	0.6	0.8	1.1	1.4	1.7	2.0	2.2	2.4		
C3324	Throw (m) 0.50m/s	-	N/A	0.3	0.8	1.1	1.5	1.8	2.1	2.4	2.7	2.8	3.0		
	0.25m/s	-	0.8	1.2	1.4	2.1	2.3	2.7	3.0	3.3	3.5	3.7	3.9		
	NC							20	24	29	34	36	37		
	Static Pressure (Pa)	-	-	-	4	6	8	10	13	17	20	25	29	37	50
	Total Pressure (Pa)	-	-	-	9	12	17	23	29	37	44	53	63	86	120
CSS48	0.75m/s	-	-	-	0.7	0.8	1.1	1.4	1.5	1.7	2.0	2.3	2.6	2.9	3.4
	Throw (m) 0.50m/s	-	-	-	1.2	1.5	1.7	1.8	2.1	2.4	2.7	3.0	3.3	3.6	3.9
	0.25m/s	-	-	-	1.8	2.0	2.4	2.7	3.1	3.5	3.8	3.9	4.2	4.5	4.8
	NC								23	27	30	33	35	39	42

Notes on Performance Data

- 1. Pressure, Throw and NC values above, are based on a specifically designed side entry box, with spigot dimensions as table above.
- 2. Listed throw values refer to a terminal velocity of 0.75, 0.50 and 0.25 m/s.
- 3. NC values are based on a standard room attenuation of $10 dB re 10^{-12} Watts$.
- 4. Values less than NC20 not shown.
- 5. For larger panel sizes 4 way spider brackets can be provided.
- 6. (CSS16 Only) For ultra low volume applications a special low volume blade is available. [When tested at 10 l/s @ 10 °C, ceiling effect is maintained].
- 7. Product Weights are available on page 140D.

CSS-VAV – Ceiling Slot Swirl VAV Diffuser

Model: CSS-VAV Diffuser

The Holyoake CSS – VAV is an externally controlled pressure dependant* VAV diffuser, complete with an adjustable blade control damper, positioned by a 24 V AC variable actuator, via a 0-10 V DC control signal.

*Performance data on the following pages is based on static pressure behind the diffuser being maintained. All testing was carried out using Spiro-set Semi-Rigid Aluminium ducting. For all VAV applications we would recommend the use of Spiro-set ducting.

Control of the diffuser is via a room thermostat and building management system (supply and installation by others).

Designed to control the temperature in a space by having the ability to change the supply air volume between a minimum and maximum, as detailed in the performance data.

(The Primary Air Temperature is not controlled by this system and would require an input from the building system temperature control).

As standard the CSS — VAV is suitable for lay-in applications into a typical 600 mm ceiling grid and comprises of the following:-

CSS 24 or CSS 48 Ceiling Slot Swirl Diffuser.

Premi-Aire™ Pre-Insulated box.

Single blade control damper.

24 V AC modulating motor with 0-10 V DC control signal.

The CSS — VAV is one of the strongest performing diffusers on the market, with proven induction technology, strong ceiling effect and capable of handling a wide range of air flows.

Using the CSS range of Square Ceiling Slot Swirl diffusers with slots set in a radial angled pattern, providing a circular swirling airflow, which achieves strong room air induction into the supply air path, creating mixing at high level, reducing draughts and uneven temperature gradients.

The whole CSS-VAV assembly, including diffuser, supply plenum box, damper and motor, is a light weight 9.6 kg.

Installation

Installation is simple due to the light weight, square, lay-in design. The assembly can easily be placed into the 'T – Rail' ceiling grid and the supply duct connected to the side entry damper spigot.

Construction

The CSS VAV face plate is constructed of powder coated zinc coated steel (aluminium option available, contact your local Holyoake branch) with tough UV stabilised air pattern elements, available in black, or white. The supply plenum box is assembled from Premi-Aire™ board and is complete with a galvanised steel connecting spigot and aluminium single blade damper, with a 24 V AC modulating motor, positioned for easy access for wiring and maintenance through an adjoining ceiling tile.

Features

- Lightweight Premi-Aire™ Box Construction.
- Infinite Range of Throw Patterns.
- High Induction Swirl.
- 24 V AC Modulating Actuator.
- 0-10 V DC Positioning Control.
- Pressure Dependant Control.

Technical Data								
Swirl Type	CSS24, or CSS48							
Box Type	Premi-Aire™							
Thermal Rating	R1.0							
Control Damper	Single Blade							
Actuator	24 V AC, c/w 0-10 V DC Signal							
Spigot Diameter	250mm							
Gross Weight	9.6 kg							

Performance Data - CSS-VAV 600 24

	Inlet Static Pressure 13Pa - CSS24-VAV- <mark>250</mark> -SBD								
Damay Basitian	Anturator Circums	Flow m ³ /s		Throw (m) at Vt(m/s)		NC			
Damper Position	Actuator Signal	FIOW M-7S	0.25	0.5	0.75	NL			
100% Open	10 VDC	0.175	2.7	1.8	1.1	32			
75% Open	7.5 VDC	0.159	2.5	1.6	0.9	31			
50% Open	5 VDC	0.106	1.4	0.8	n/a	27			
25% Open	2.5 VDC	0.052	0.8	n/a	n/a	26			
20% Open	2 VDC	0.042	0.7	n/a	n/a	25			
Min Position	O VDC	0.023	0.3	n/a	n/a	21			

Inlet Static Pressure 20Pa - CSS24-VAV-250-SBD										
Damas Pacition		Flow m ³ /s		Throw (m) at Vt(m/s)		NC				
Damper Position	Actuator Signal	FIOW M ⁻ /S	0.25	0.5	0.75	NL				
100% Open	10 VDC	0.213	3.2	2.3	1.6	36				
75% Open	7.5 VDC	0.199	3.0	2.1	1.4	33				
50% Open	5 VDC	0.134	2.2	1.3	0.7	29				
25% Open	2.5 VDC	0.062	1.0	0.1	n/a	27				
20% Open	2 VDC	0.055	0.8	n/a	n/a	26				
Min Position	O VDC	0.030	0.5	n/a	n/a	22				

Inlet Static Pressure 25Pa - CSS24-VAV- <mark>250</mark> -SBD										
Damper Position	Anturator Signal	Flow m ³ /s		Throw (m) at Vt(m/s)		NC				
	Actuator Signal	FIOW M ⁻ /S	0.25	0.5	0.75	NC				
100%	10 VDC	0.237	3.4	2.5	1.8	42				
75% Open	7.5 VDC	0.221	3.3	2.4	1.7	37				
50% Open	5 VDC	0.147	2.3	1.5	0.8	30				
25% Open	2.5 VDC	0.073	1.2	0.3	n/a	29				
20% Open	2 VDC	0.063	1.0	0.1	n/a	27				
Min Position	O VDC	0.034	0.6	n/a	n/a	23				

Inlet Static Pressure 30Pa - CSS24-VAV- <mark>250</mark> -SBD											
Damper Position	Andreas Cinnal	Flour = 3/a		Throw (m) at Vt(m/s)		NC					
	Actuator Signal	Flow m ³ /s	0.25	0.5	0.75	NL					
100% Open	10 VDC	0.258	3.5	2.7	2.0	49					
75% Open	7.5 VDC	0.243	3.4	2.5	1.8	44					
50% Open	5 VDC	0.162	2.5	1.6	0.9	34					
25% Open	2.5 VDC	0.078	1.2	0.3	n/a	30					
20% Open	2 VDC	0.068	1.1	0.2	n/a	28					
Min Position	O VDC	0.038	0.6	n/a	n/a	24					

	Inlet Static Pressure 40Pa - CSS24-VAV- <mark>250</mark> -SBD										
Dampay Dacition	Anturator Circul	Flow m ³ /s	Throw (m) at Vt(m/s)								
Damper Position	Actuator Signal	FIOW M ⁻ /S	0.25	0.5	0.75	NL					
100% Open	10 VDC	0.300	3.9	3.0	2.4	57					
75% Open	7.5 VDC	0.278	3.7	2.8	2.2	50					
50% Open	5 VDC	0.190	2.9	2.0	1.3	36					
25% Open	2.5 VDC	0.091	1.3	0.8	n/a	32					
20% Open	2 VDC	0.079	1.2	0.3	n/a	29					
Min Position	O VDC	0.042	0.7	n/a	n/a	25					

*Note

The air volume performance for VAV diffusers is dependant on static pressure behind the diffuser being maintained.

CSS-VAV 600 48 - Performance Data

	Inlet Static Pressure 13Pa - CSS48-VAV- <mark>250</mark> -SBD										
Daniel Daniel a	Andread Sinnel	FI 3/-		Throw (m) at Vt(m/s)		NC					
Damper Position	Actuator Signal	Flow m ³ /s	0.25	0.5	0.75	NL					
100% Open	10 VDC	0.200	3.1	2.1	1.5	30					
75% Open	7.5 VDC	0.178	2.7	1.8	1.4	29					
50% Open	5 VDC	0.104	1.8	1.2	0.7	26					
25% Open	2.5 VDC	0.050	1.6	0.6	n/a	24					
20% Open	2 VDC	0.045	1.5	0.5	n/a	23					
Min Position	O VDC	0.020	0.4	n/a	n/a	20					

Inlet Static Pressure 20Pa - CSS48-VAV-250-SBD										
Daniel Daniel au		FI3/-		Throw (m) at Vt(m/s)		NC				
Damper Position	Actuator Signal	Flow m ³ /s	0.25	0.5	0.75	NL				
100% Open	10 VDC	0.250	3.8	2.7	2.0	35				
75% Open	7.5 VDC	0.222	3.5	2.4	1.7	32				
50% Open	5 VDC	0.130	2.0	1.5	0.8	26				
25% Open	2.5 VDC	0.062	1.6	0.7	0.3	24				
20% Open	2 VDC	0.054	1.6	0.7	0.3	24				
Min Position	O VDC	0.026	0.4	n/a	n/a	20				

Inlet Static Pressure 25Pa - CSS48-VAV- <mark>250</mark> -SBD										
Daniel Daniel a	Andread Simulation	Flam 3/a			NC					
Damper Position	Actuator Signal	Flow m ³ /s	0.25	0.5	0.75	NL				
100% Open	10 VDC	0.275	3.9	3.0	2.3	40				
75% Open	7.5 VDC	0.247	3.8	2.7	2.0	35				
50% Open	5 VDC	0.145	2.4	1.7	1.1	27				
25% Open	2.5 VDC	0.071	1.7	1.2	0.7	26				
20% Open	2 VDC	0.062	1.6	0.7	0.3	24				
Min Position	O VDC	0.030	0.8	n/a	n/a	20				

Inlet Static Pressure 30Pa - CSS48-VAV- 250 -SBD										
Damas Pacition	Actuatos Cirmal	Flaur = 3 /a		Throw (m) at Vt(m/s)		NC				
Damper Position	Actuator Signal	Flow m ³ /s	0.25	0.5	0.75	NL				
100% Open	10 VDC	0.300	4.2	3.3	2.6	47				
75% Open	7.5 VDC	0.280	3.9	3.0	2.3	43				
50% Open	5 VDC	0.180	2.7	1.8	1.4	32				
25% Open	2.5 VDC	0.082	1.7	1.2	0.7	28				
20% Open	2 VDC	0.070	1.7	1.2	0.7	27				
Min Position	O VDC	0.034	0.8	n/a	n/a	22				

Inlet Static Pressure 40Pa - CSS48-VAV- 250 -SBD										
B B. W.	A	FI 3/		Throw (m) at Vt(m/s)		NG				
Damper Position	Actuator Signal	Flow m ³ /s	0.25	0.5	0.75	NL				
100% Open	10 VDC	0.350	4.5	3.6	2.9	54				
75% Open	7.5 VDC	0.320	4.3	3.4	2.7	49				
50% Open	5 VDC	0.206	3.1	2.1	1.5	35				
25% Open	2.5 VDC	0.100	1.8	1.2	0.7	31				
20% Open	2 VDC	0.082	1.7	1.2	0.7	29				
Min Position	0 VDC	0.040	1.5	0.5	n/a	23				

*Note

The air volume performance for VAV diffusers is dependant on static pressure behind the diffuser being maintained.

Ceiling Fixed Pattern Radial Swirl Diffuser – CFP

Model: CFP

The Holyoake CFP range of square and round faced Fixed Pattern Radial Induction Swirl Diffusers, have been designed to provide high quality indoor air diffusion.

The CFP is constructed with swirl deflection blades that produce a highly turbulent radial airflow pattern. This draws room air up into the supply air path resulting in mixing at high level and rapid temperature equalization, whilst creating optimum room space conditions, with even temperature gradients.

The CFP diffuser is suitable for use with increased temperature differentials and in VAV applications, as the ceiling effect is maintained from minimal through to very high air flow rates.

CFP Square Model Installation

Installation is simple due to the availability of the square lay-in type design. The diffuser can be placed into the T-rail system quickly and easily and the supply duct attached. Alternatively, the diffuser may be conventionally flush mounted, or with the use of a surface mounted installation flange.

CFPR Circular Model Installation

Installation is also made simple with this model, with the availability of a top entry round cushion head plenum. The diffuser outer edge can be placed flush mounted against the ceiling surface.

Specifically Designed Swirl Inducing Side Entry Box for CFP Diffusers

A suitably sized specifically designed Holyoake Evenflow Plenum, should be incorporated to provide the best performance.

Features

- Strong Ceiling Effect
- Radial Diffusion Pattern
- High Induction Swirl
- Easy Lay-in Installation
- Attractive Appearance
- Range of Square and Round Faced options

Construction

The CFP is constructed from a pressed steel body and has a high quality powder coat finish. Air pattern elements are constructed from a tough UV stabilized and fire rated engineering polymer, in either white, or black. The CFP diffuser is both robust and lightweight making on-site installation easy.

	Sizes Available (Nom: Face)								
	CFP450-12	CFP600-12	CFP600-20	CFP600-24	CFPR615-20				
A	430	430	510	545	510				
В	445	595	595	595	615				
С	45	45	45	45	45				

CFPR

CFP

Note Refer to page 132D for box and diffuser weights.

CFP – Performance Data

CFP-450 BLK 1

CFP-450 WHT 12

CFP-600 BLK 12

CFP-600 WHT 12

Model: CFP Radial Induction Swirl Diffuser (Square)

450/600/12 Nominal Face*

Duct Size	Flow Rate (I/s)	25	50	75	100	125	150	
150	Static Pressure (Pa)	2	5	11	19	29	43	
	Throw (m)	0.2-0.5-0.9	0.3-0.9-1.2	0.9-1.5-2.2	1.0-1.9-2.6	1.5-2.3-3.4	1.6-2.5-4.1	
	NC	*<10	11	18	24	31	37	
	Static Pressure (Pa)	1	3	7	10	16	27	
200	Throw (m)	0.2-0.3-0.8	0.3-0.6-1.2	0.5-1.0-2.0	0.8-1.5-2.3	1.2-1.9-3.0	1.2-2.0-3.8	
	NC	*<10	*<10	13	17	22	27	
	Static Pressure (Pa)	*<1	2	5	8	10	18	
250	Throw (m)	0.2-0.5-0.6	0.3-0.5-1.1	0.4-1.0-1.9	0.7-1.4-2.2	1.1-1.8-2.9	1.1-1.8-3.6	
	NC	*<10	*<10	11	13	16	20	

^{*} See Notes on Performance Data on Page 131D.

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

Performance Data – CFP

CED COU DI K 3

CFP-600 WHT 20

CFP-600 BLK 24

CFP-600 WHT 24

Model: CFP Radial Induction Swirl Diffuser (Square)

600/20 Nominal Face

Duct Size:	Flow Rate (I/s)	100	125	150	175	200	250	300	350
	Static Pressure (Pa)	8	10	13	18	25			
150	Throw (m)	1.2-1.9-3.0	1.6-2.4-3.4	1.8-2.5-3.8	1.9-2.7-3.9	2.2-2.9-4.2			
	NC	14	23	33	41	51			
	Static Pressure (Pa)	6	8	11	15	19	30	42	
200	Throw (m)	1.2-1.9-3.0	1.5-2.2-3.3	1.6-2.3-3.6	1.9-2.5-3.8	2.0-2.7-3.9	2.6-3.3-4.7	2.9-3.4-5.0	
	NC	13	22	30	38	45	54	61	
	Static Pressure (Pa)	5	6	9	12	14	21	28	38
250	Throw (m)	0.9-1.2-2.4	1.2-1.3-2.7	1.3-1.6-2.8	1.5-2.0-3.0	1.6-2.2-3.5	2.1-3.0-3.9	2.4-3.3-4.5	2.8-3.4-5.1
	NC	<10	14	17	21	27	34	39	46
	Static Pressure (Pa)	4	5	7	10	12	19	26	35
300	Throw (m)	0.7-1.4-2.1	0.9-1.5-2.2	1.1-1.7-2.7	1.3-1.9-2.9	1.4-2.0-3.4	1.9-2.6-3.8	2.2-2.8-4.5	2.6-3.3-4.9
	NC	<10	<10	10	18	21	28	35	42
	Static Pressure (Pa)	2	3	5	6	8	12	17	28
350	Throw (m)	0.6-1.1-2.40	0.8-1.3-2.1	1.0-1.5-2.5	1.3-2.0-2.7	1.4-2.1-3.3	1.9-2.9-3.6	2.2-3.2-4.3	2.5-3.4-4.8
	NC	<10	<10	<10	14	19	26	33	40

Model: CFP Radial Induction Swirl Diffuser (Square)

600/24 Nominal Face

Duct Size	Flow Rate (I/s)	25	50	100	150	200	250	300	400
	Static Pressure (Pa)	*<1	2						
150	Throw (m)	0.3-0.6-1.2	1.2-1.6-2.3						
	NC	*<10	*<10						
	Static Pressure (Pa)	*<1	1	4	9	15	22	30	49
200	Throw (m)	0.3-0.5-1.17	1.1-1.5-2.2	1.9-2.8-3.3	2.9-3.2-4.7	3.5-4.1-4.9	3.7-4.3-5.4	4.7-4.9-5.6	4.7-5.6-6.8
	NC	*<10	*<10	12	24	31	37	42	53
	Static Pressure (Pa)	*<1	1	3	5	8	11	15	28
250	Throw (m)	0.2-0.3-0.6	0.6-1.0-1.5	1.2-1.8-2.3	2.2-3.2-4.5	2.7-3.5-4.7	2.9-3.8-5.2	3.2-4.3-5.6	3.8-4.7-6.7
	NC	*<10	*<10	11	14	24	33	42	52
	Static Pressure (Pa)	*<1	*<1	2	4	8	10	15	28
300	Throw (m)	0.2-0.3-0.5	0.5-0.6-0.8	1.0-1.4-1.7	1.7-2.2-2.8	2.2-2.4-3.0	2.3-2.7-3.1	2.6-3.4-4.2	4.3-5.0-5.6
	NC	*<10	*<10	10	14	24	26	36	52
	Static Pressure (Pa)	*<1	*<1	2	3	7	9	13	26
350	Throw (m)			0.9-1.2-1.6	1.5-2.1-2.7	2.1-2.3-3.0	2.2-2.6-3.0	2.5-3.2-4.1	4.2-4.9-5.5
	NC	*<10	*<10	*<10	12	22	25	34	50

*Notes

- 1. Performance data is based on a specifically designed side entry
- 2. Listed throw distances are to a terminal velocity (Vt) of 0.75 0.5 0.25 m/s.
- 3. The NC values are based on a room absorption of 10dB re $10^{\text{-}12}$ Watts.
- 4. Static pressure less than 1Pa not shown.
- 5. NC values of less than 10 NC not shown.

CFP – Performance Data

Model: CFPR Radial Induction Swirl Diffuser (Circular)

615/20 Nominal Face

Duct Size:	Flow Rate (I/s)	50	75	100	125	150	175	200	250	300	350	400
	Static Pressure (Pa)	4	6	11	16	24	31	40	52	67		
250	Throw (m)	0.4-1.0-1.5	0.8-1.4-2.0	1.2-1.6-2.5	1.4-2.4-3.4	1.7-2.6-3.6	2.0-3.1-3.9	2.2-3.1-3.9	2.4-3.4-4.9	3.0-4.3-5.6		
	NC	<10	<10	16	25	30	35	38	45	50		
	Static Pressure (Pa)	1	3	5	7	9	13	17	26	36	48	
300	Throw (m)	0.3-0.4-1.0	0.6-0.9-1.7	0.9-1.4-2.5	1.2-1.6-2.7	1.3-1.7-2.8	1.4-1.8-3.1	1.5-1.9-3.2	1.7-2.6-3.6	2.2-2.8-4.3	2.9-3.7-4.9	
	NC	<10	<10	<10	14	23	30	32	39	46	50	
350	Static Pressure (Pa)	1	2	3	4	5	7	11	15	19	23	30
	Throw (m)	0.2-0.4-1.0	0.3-0.5-1.5	0.5-1.0-1.7	1.0-1.4-2.3	1.1-1.5-2.6	1.2-1.6-2.7	1.3-1.8-2.8	1.4-2.0-3.2	2.2-2.6-4.1	2.4-3.5-4.8	2.9-3.9-5.6
	NC	<10	<10	<10	10	18	26	29	37	44	48	52

Product Weights in Kg										
CFP450-12 CFP600-12 CFP600-20 CFP600-24 CFPR615-20										
Diffuser	1.23	2.23	2.11	2.13	1.76					
Galv Box	6.5	6.5	6.5	6.5	3.14					
Prem Box	2.5	2.6	2.6	2.6	N/A					

Notes

- 1. CFPR Performance Data is based on a specifically designed top entry galvanized plenum box.
- 2. Listed throw distances are to a terminal velocity (Vt) of 0.75 0.50 0.25 m/s.
- 3. The NC values are based on room absorption of 10dB re: 10^{-12} Watts.
- 4. NC values of less than 10 NC not shown.

132D — © Holyoake by Price – 2023

Ceiling Fixed Pattern Pressed Steel – CFPP

Model: CFPP

The Holyoake CFPP range of Radial Induction Swirl Diffusers have been designed to provide high quality indoor air diffusion. The CFPP comprises of swirl deflection blades that produce a radial airflow pattern, highly turbulent for rapid temperature equalisation, producing stable room space conditions with even temperature gradients.

The CFPP diffuser is suitable for use with increased temperature differentials and in VAV applications, as the ceiling effect is maintained from minimal, through to very high air flow rates.

The CFPP is able to achieve high room air diffusion quality due to the strong induction swirl pattern it produces. This draws room air up into the supply air flow path, which results in mixing at high level, reducing the chance of draughts and optimising room space conditions.

Installation

CFPP Installation

Installation is simple due to the square lay-in type design. The diffuser can be placed into the T-rail system quickly and easily and the supply duct attached, via a circular spigot connection to the specially designed cushion head plenum. Alternatively the diffuser may be conventionally flush mounted, or with the use of a surface mounted installation flange.

CFPP-R Installation

The installation is simple due to the surface mount design. The supply air duct can be attached direct to the circular spigot or fitted with specially designed Holyoake swirl plenum.

Construction

The CFPP is constructed as a single pressing with the body and air pattern elements mechanically formed steel and finished in a high quality white powder coat finish. The CFPP diffuser is both robust and lightweight, making for easy on-site installation.

Features

- Strong Ceiling Effect
- Radial Diffustion Pattern
- · High Induction Swirl
- · Easy Lay-in Installation
- Attractive Appearance

For optimum performance a specifically designed side entry Holyoake Premi-Aire Swirl plenum is recommended.

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

Ceiling Radial Swirl Diffuser

Dimension	A	В	С	D
CFPP 400/24	395	350	30	10
CFPP 450/24	445	350	30	10
CFPP 600S/24	595	350	30	10
CFPP 600/30	595	530	30	10

CFPP – Performance Data

CFPP 400/24

CFPP 450/24

CFPP 600S/24

CFPP 600/30

CFPP 600/30 (rear view) CFPP600 - A_{eff} 0.0609m²

CFPP 600C/30[rear view]
CFPP600C - A_{eff} 0.0305m²

Model: C	lodel: CFPP Ceiling Radial Swirl Diffuser								400
Duct Size:	Flow Rate (I/s)	25	50	75	100	125	150	175	200
	Static Pressure (Pa)	3	6	14	25	35	58	-	-
150	Throw (m)	0.2-0.3-0.5	0.4-0.6-1.0	0.6-0.9-1.4	0.8-1.1-1.6	0.9-1.2-1.9	1.1-1.5-2.1	-	-
	NC	<10	11	25	32	37	43	-	-
	Static Pressure (Pa)	2	5	12	21	34	48	63	-
200	Throw (m)	0.2-0.3-0.4	0.3-0.5-0.9	0.5-0.8-1.3	0.9-0.9-1.5	0.8-1.1-1.6	1.0-1.4-1.8	1.2-1.7-2.2	-
	NC	<10	<10	15	23	32	37	42	-
	Static Pressure (Pa)	2	4	11	19	31	45	59	77
250	Throw (m)	0.3-0.4-0.6	0.5-0.7-1.3	0.9-1.2-2.0	1.2-1.6-2.0	1.5-1.9-2.6	1.9-2.6-3.4	2.1-2.9-3.6	2.4-3.1-3.7
	NC	<10	<10	11	18	28	32	36	39

Model: C	FPP Ceiling Rad			6	00C/30				
Duct Size:	Flow Rate (I/s)	25	50	75	100	125	150	175	200
	Static Pressure (Pa)	3	6	14	25	35	58	-	-
150	Throw (m)	0.2-0.3-0.5	0.4-0.6-1.0	0.6-0.9-1.4	0.8-1.1-1.6	0.9-1.2-1.9	1.1-1.5-2.1	-	-
	NC	<10	11	25	32	37	43	-	-
	Static Pressure (Pa)	2	5	12	21	34	48	63	-
200	Throw (m)	0.2-0.3-0.4	0.3-0.5-0.9	0.5-0.8-1.3	0.9-0.9-1.5	0.8-1.1-1.6	1.0-1.4-1.8	1.2-1.7-2.2	-
	NC	<10	<10	15	23	32	37	42	-
	Static Pressure (Pa)	2	4	11	19	31	45	59	77
250	Throw (m)	0.3-0.4-0.6	0.5-0.7-1.3	0.9-1.2-2.0	1.2-1.6-2.0	1.5-1.9-2.6	1.9-2.6-3.4	2.1-2.9-3.6	2.4-3.1-3.7
	NC	<10	<10	11	18	28	32	36	39

Notes on Performance Data

- 1. Performance data is based on a specifically designed side entry Premi-Aire cushion head box.
- 2. Listed throw distances are to a terminal velocity (Vt) of 0.75-0.5-0.25 m/s.
- 3. Performace data is based upon a Δ t 9°C.

- The NC values are based on a room absorbtion of 10dB re 10¹²
 Watts
- 5. NC values less than NC 10 not shown.
- 6. 600C fitted with velocity enhancer.

Performance Data - CFPP

Model CFPP Ceiling Radial Swirl Diffuser

									000/30
Duct Size:	Flow Rate (I/s)	100	125	150	175	200	250	300	350
	Static Pressure (Pa)	8	10	13	18	25	-	-	-
150	Throw (m)	1.2-1.9-3.0	1.6-2.4-3.4	1.8-2.5-3.8	1.9-2.7-3.9	2.2-2.9-4.2	-	-	-
	NC	14	23	33	41	51	-	-	-
	Static Pressure (Pa)	6	8	11	15	19	30	42	-
200	Throw (m)	1.2-1.9-3.0	1.6-2.2-3.3	1.6-2.3-3.6	1.9-2.5-3.8	2.0-2.7-3.9	2.6-3.3-4.7	2.9-3.4-5.0	-
	NC	13	22	30	38	45	34	51	-
	Static Pressure (Pa)	5	6	9	12	14	21	28	38
250	Throw (m)	0.9-1.2-2.4	1.2-1.3-2.7	1.3-1.6-2.8	1.5-2.0-3.0	1.6-2.2-3.5	2.1-3.0-3.9	2.4-3.3-4.5	2.8-3.4-5.1
	NC	<10	14	17	21	27	34	39	46
	Static Pressure (Pa)	4	5	7	10	12	19	26	35
300	Throw (m)	0.7-1.4-2.1	0.9-1.5-2.2	1.1-1.7-2.7	1.3-1.9-2.9	1.4-2.0-3.4	1.9-2.6-3.8	2.2-2.8-4.5	2.6-3.3-4.9
	NC	<10	<10	10	18	21	28	35	42
	Static Pressure (Pa)	2	3	5	6	8	12	17	28
350	Throw (m)	0.6-1.1-2.40	0.8-1.3-2.1	1.0-1.5-2.5	1.3-2.0-2.7	1.4-2.1-3.3	1.9-2.9-3.6	2.2-3.2-4.3	2.5-3.4-4.8
	NC	<10	<10	<10	10	19	23	30	36

Model: CFPP	Ceiling F	adial
Swirl	Diffuser	(square)

$-$ C Γ	- ББ)) (חו	/ 4 C
	- 12 12	30		/ }
_ UI			, U	

Duct Size:	Flow Rate	(l/s)	25	50	80	100
Nominal Duct Size 150mm Diameter	Static Pressi	2	8	18	28	
	Throw (m)	-	-	0.38	0.62	0.82
		0.3	0.3	0.63	0.95	1.10
		0.5	0.5	1.05	1.45	0.72
	NC		<10	25	38	43

Dimension	A	В	С	D
CFPP 300/18	300	200	12	18

Note: Optional plate size (A) of 250 and 350 also avaliable.

CFPP 300/18 blade profile swirl diffuser (Face View)

CFPP - Ceiling Fixed Pattern Pressed Steel Round

Model: CFPP-R Ceiling Radial Swirl Diffuser

Dimension	A	В	С	D
CFPP-R 500/24	500	350	30	10
CFPP-R 615/30	615	530	30	10

24 Swirl Blades

CFPP-R 500/24 - Aeff 0.0305m2

30 Swirl Blades

CFPP-R 615/30 - Aeff 0.0609m2

See pages 134D - 135D for CFPP round performance data

Notes on Performance Data

- 1. Performance data is based on a specifically designed side entry 3. Performace data is based upon a Δ t 9°C. Premi-Aire cushion head box.
- 2. Listed throw distances are to a terminal velocity (Vt) of 0.75-0.5-0.25 m/s.
- The NC values are based on a room absorbtion of 10dB re 10^{12}
- 5. NC values less than NC 10 not shown.

	Product Weights In Kg				
	CFPP CFPP/-C				
Diffuser	3.35	6.4			
Galv Box	6.5	6.5			
Prem Box	2.6	2.6			

136D • © Holyoake by Price – 2023

Swirl Fixed Round Aluminium - SFRA

Model: SFRA

The Holyoake SFRA range of Circular Radial Swirl Diffusers has been designed to provide exceptional indoor air diffusion.

The Series SFRA comprises of fixed pattern radial blades producing a high induction swirl airflow pattern.

The SFRA range of fixed blade swirl diffusers, presents a stylish and effective alternative to other conventional circular, or square ceiling diffusers.

The SFRA diffusers are designed to produce rapid temperature equalisation, via a horizontal radial air pattern, achieved with a turbulent high induction swirl and are ideally suited for applications with increased temperature differentials.

The SFRA diffusers are ideally suited to VAV applications, where ceiling effect is maintained from minimal through to high airflow rates.

Installation

SFRA Installation is easy with the diffusers being supported by externally mounted fixing tabs, riveted to the circular casing periphery, to provide a suitable fixture to attach to support anchors, provided above the ceiling, (supply and fit by others).

Note: Diffusers require mechancial fixings to be supported entirely from the ductwork.

For use with circular ducting, or can be connected to a Premi-aire™ light weight plenum box spigot, (refer to your local Holyoake branch).

Construction

Series SFRA are manufactured from spun aluminium, with pressed and folded blades. They are available in a range of five sizes and are supplied with ceiling support tabs fitted as standard. Series SFRA are finished in white powder coat and fitted with accessories and dampers where indicated.

Features

- Strong Ceiling Effect.
- Radial Diffusion Pattern
- High Induction Swirl.
- Light Weight Spun Aluminium Construction.
- Easy Installation.
- Attractive Appearance.

Nominal		SF	RA	
Duct Size	Α	В	С	D
200	195	299	65	33
250	245	362	70	35
300	295	425	90	37
350	345	488	110	38
400	395	550	130	40

Nominal Duct Size	Approximate Weight Kg
200	0.28
250	0.43
300	0.67
350	0.95
400	1.11

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

SFRA - Performance Data

Model: SFRA

	Flow Rate (I/s)	25	50	75					
Nominal	0.75m/s	-	0.1	0.2					
Duct Size	Throw (m) 0.50m/s	0.1	0.3	0.5					
200mm	0.25m/s	0.2	0.6	1.0					
Diameter	Static Pressure (Pa)	7	18	25					
Ï	NC	17	32	40					
	Flow Rate (I/s)	50	75	100	125	150	175		
Nominal	0.75m/s	0.2	0.3	0.5	0.6	1.0	1.2		
Duct Size	Throw (m) 0.50m/s	0.4	0.5	0.9	1.1	1.6	1.8		
250mm	0.25m/s	0.8	1.1	1.6	1.9	2.5	3.0		
Diameter	Static Pressure (Pa)	3	5	9	13	20	27		
Ï	NC	18	22	26	32	38	48		
	Flow Rate (I/s)	50	75	100	125	150	175	200	
Nominal	0.75m/s	0.2	0.4	0.6	0.8	1.1	1.3	1.4	
Duct Size	Throw (m) 0.50m/s	0.5	0.7	1.0	1.4	1.6	1.9	2.1	
300mm	0.25m/s	1.0	1.2	1.6	2.1	2.5	2.9	3.4	
Diameter	Static Pressure (Pa)	2	4	8	11	17	23	30	
	NC	16	20	24	30	36	42	44	
	Flow Rate (I/s)	75	100	125	150	175	200	225	250
Nominal	0.75m/s	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.8
Duct Size	Throw (m) 0.50m/s	0.6	1.2	1.5	1.8	2.0	2.3	2.8	3.2
350mm	0.25m/s	1.1	1.4	1.7	2.0	2.4	2.9	3.4	4.0
Diameter	Static Pressure (Pa)	3	5	9	12	16	20	25	32
	NC	13	18	23	28	34	39	45	51
	Flow Rate (I/s)	125	150	175	200	225	250	275	300
Nominal	0.75m/s	0.6	0.8	1.0	1.2	1.4	1.8	2.3	2.7
Duct Size	Throw (m) 0.50m/s	0.8	1.2	1.4	1.6	1.8	2.4	2.8	3.1
400mm	0.25m/s	1.2	1.5	2.0	2.4	2.6	3.0	3.4	3.6
Diameter	Static Pressure (Pa)	5	7	10	13	17	20	24	29
Ī	NC	18	21	24	27	30	33	37	42

Product Ordering Key and Suggested Specification

Holyoake Series SFRA Circular Fixed Round Aluminium Radial Swirl Diffusers shall be high induction horizontal swirl diffuser, with fixed pattern radial blades, to achieve a high induction swirl airflow pattern.

Series SFRA Diffusers shall be suitable for variable air volume (VAV) applications.

Circular Radial Swirl Diffusers shall be finished in white power coat.

Diffusers shall be fitted with accessories and dampers where indicated.

All shall be as manufactured by Holyoake.

Notes

- 1. Horizontal radial throws (m) are to a terminal velocity (Vt) of 0.75 0.50
- 2. Pressure drop figures are based on duct mounted units.
- 3. For Premi-Aire™ side entry supply boxes, Multiply Throws by a factor of 0.95 and Pressure Drop by a factor of 1.02.
- 4. NC values are based on standard room attenuation of 10dB re 10^{-12} Watts
- 5. NC values below NC 10 not shown.
- 6. Seismic restraints would be required, but not supplied.

CFP, CFPP, CRS, & CSS

Product Ordering Key and Suggested Specifications

Ceiling Radial Induction Swirl Diffusers shall be Holyoake Model CFP. These diffusers shall be designed for use in Variable Air Volume (VAV) systems with radial, high induction, air flow patterns.

CFP shall maintain a COANDA effect at reduced volume and provide uniform temperature gradients throughout the occupied space.

CFP Diffusers shall be finished in powder coat and be supplied with a suitable side, or top entry box and be fitted with accessories and dampers where indicated.

All shall be as manufactured by Holyoake.

Ceiling Radial Swirl Diffusers shall be Holyoake Model CFPP 600 series. These diffusers shall be designed for use in Variable Air Volume (VAV) systems with radial, high induction, air flow patterns.

CFPP shall maintain a COANDA effect at reduced volume and provide uniform temperature gradients throughout the occupied space.

CFPP Diffusers shall be finished in powder coat and be supplied with a suitable side, or top entry box and be fitted with accessories and dampers where indicated.

All shall be as manufactured by Holyoake.

Ceiling Swirl Diffusers shall be Holyoake Model CRS. These shall be designed with a radial, high induction, air flow pattern. They shall maintain a COANDA effect at reduced volume and provide uniform temperature gradients throughout the occupied space.

CRS Diffusers shall be finished in powder coat and be supplied complete with a specifically designed swirl inducing side entry box and be fitted with accessories and dampers where indicated.

All shall be as manufactured by Holyoake.

* Note: Only these diameters are available on CRS 300

Ceiling Slot Swirl Diffusers shall be Holyoake Model CSS. These shall be designed with a radial, high induction, air flow pattern.

CSS diffusers shall maintain a COANDA effect at reduced volume and provide uniform temperature gradients throughout the occupied space. They shall have pattern blades which can be adjusted from the diffuser face to allow the air to be directed horizontally, or vertically.

CSS Diffusers shall be finished in powder coat and be supplied with a suitable side, or top entry box and be fitted with accessories and dampers where indicated.

All shall be as manufactured by Holyoake.

Note

All ceiling diffusers, seismic restraints are required, but not supplied.

CSS - VAV

Product Ordering Key and Suggested Specifications

Ceiling Slot Swirl VAV Diffusers shall be Holyoake Model CSS – VAV.

These shall be designed with a radial, high induction, air flow pattern, providing strong ceiling effect (COANDA) and be capable of handling a wide range of air flows.

Designed to control the temperature in an occupied space, by an externally controlled, pressure dependant damper.

Controlled by a room thermostat and building management system (supplied by others), the CSS - VAV has a specifically designed, curved edge, single blade control damper, positioned by a 24 V AC variable actuator, via a 0-10 V DC control signal.

CSS – VAV Diffusers shall be finished in Powder Coat and are complete with a 'Premi-aire'" Pre-Insulated box, with a 250 mm diameter inlet spigot.

All shall be as manufactured by Holyoake.

Series CSS Product Weights				
Sizes Available	Weights in Kg			
CSS8	1.3			
CSS16	2.4			
CSS21	2.5			
CSS24	2.5			
CSS48	2.6			
CSSR500 8	2.81			
CSSR500 16	3.01			
CSSR500 21	3.03			
CSSR615 8	3.05			
CSSR615 16	3.25			

Series CSS Product Weights				
Sizes Available	Weights in Kg			
CSSR615 21	3.35			
CSSR615 24	3.35			
CSSR615 48	3.45			
450 GALV BOX	6.5			
600 GALV BOX	6.5			
450 PREM BOX	2.1			
600 PREM BOX	2.7			
500 DIA GALV PLENUM	2.94			
615 DIA GALV PLENUM	3.14			

Note: All ceiling diffusers, seismic restraints are required, but not supplied.

CMP-A	Ceiling Multi Pattern - Aluminium	142 - 157D
CMP-ADJ	Ceiling Multi Pattern - Adjustable	169D
СМРН	Ceiling Multi Pattern - Horizontal Blade	158 - 165D
СМРР	Ceiling Multi Pattern - Plaque	166D
CMP-TL	Ceiling Multi Pattern - Thermal Low	168D
HOLDIT	Cost Mounting Clip	170D
Ordering Key ar	171 - 172D	

- Square/rectangular multi pattern. Louver face and plaque type variable volume diffuser. Ceiling thermal diffuser.
- Low cost thermal diffuser.

- Aluminium, or Steel construction.
- Removeable core.
- Full range of air distribution patterns. Adjustable horizontal to vertical vanes.

CMP-A - Ceiling Multi Pattern Diffuser (Aluminium)

Model: CMP-A Ceiling Multi Pattern – Aluminium

The Series CMP-A diffusers are a Louver Face Ceiling Diffuser of extruded aluminium construction, with removable core, available in a range of sizes and air distribution patterns, to suit numerous and varied requirements.

Construction

Series CMP-A diffusers are ruggedly constructed entirely of aluminium, are lightweight and have no heavy cast, or moulded components. Precision combination corner gussets and braces keep mitres to a hairline and aluminium rivets hold the core components rigidly together, eliminating the possibility of warping, flexing, or rattling.

Panel diffusers (Type 2 on page 144D), are mechanically secured to steel panels with the Unique Holyoake mounting pins, eliminating gaps and producing a super-fine junction between panel and extrusion.

Installation

The diffusers frame assembly is installed in the ceiling opening and attached and sealed to the supply duct. The extensive range of cores, all snap in to the frame surrounds, with nickel plated spring steel thumb clips.

Finish

All Holyoake aluminium diffusers receive a three stage preparation, prior to final finishing; cleaning, chemical etch and drying. This preparation ensures powder coat adhesion and precludes powder peeling, or flaking after installation.

Standard colour is Holyoake White.

Features

- All aluminium construction.
- Precision mitred corners.
- Selection of frame styles.
- Variety of throw patterns.
- Snap-in interchangeable cores.
- Tough powder coat finish.
- Lightweight Premi-Aire™ and galvanised cushion head boxes available.

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

Reflected Ceiling Plan Views – CMP

Model: CMP and CMPH Core Styles

^{*} Square core patterns.

Diffusers are only available in standard sizes as listed in performance data.

CMP-A – Ceiling Multi Pattern Diffuser (Aluminium)

Model: CMP-A — Ceiling Multi Pattern Diffuser (Aluminium)

Standard Flange Frame.

Designed for surface mounting on all types of ceilings, as well as lay-in ceiling tile applications.

Construction

Aluminium:

- 0.75mm extruded 6063-T5 aluminium outer frame.
- 0.55mm removable aluminium core.

Panel Diffuser.

Lay-in type for installation in suspended "T-Rail" type ceilings. Standard panel overall size is 595×595 to suit a 600×600 grid. Size 450×450 has an overall face size of 595×595 . It therefore does not require a panel in a 600 grid and fits "T-Rail" spacing with clearance*.

Construction

Aluminium:

0.75mm extruded 6063-T5 aluminium outer frame.

0.55mm removable aluminium core.

* Note: 0.75 mm Steel Panel on CMP-A Type 2. Product weights are shown on page 150D.

Ceiling Multi Pattern Diffuser (Aluminium) – CMP-A

Model: CMP-A — Ceiling Multi Pattern Diffuser (Aluminium)

Drop Frame.

Lowers the face of the diffuser below the ceiling line. Can be used to reduce smudging, or against obstacles to minimise drafts. Can be supplied in any height from 50 - 81mm, but unless otherwise specified, frame height of 50 mm will be furnished. Special order only.

Construction

Aluminium:

0.75mm extruded 6063-T5 aluminium outer frame.

0.55mm removable aluminium core.

Bevelled Drop Frame.

Smartly styled bevelled type surround reduces ceiling smudging. For all surface mounting applications. Special order only.

Construction

Aluminium:

0.75mm extruded 6063-T5 aluminium outer frame.

0.55mm removable aluminium core.

Product weights are shown on page 150D.

P - Octave Band Sound Data

Model: CMP Supply

L	P			OCTAVE B	OCTAVE BANDS, Lw			
NC	A-Scale	125	250	500*	1000	2000	4000	
15	19	38-40-42-44	30-32-34-35	27-27-27-27	25-25-25-25	21-19-17-15	9-5 – –	
20	24	40-42-44-46	33-35-37-38	31-31-31-31	30-30-30-30	27-25-23-21	17-13-9 –	
25	29	43-45-47-49	37-39-41-42	35-35-35-35	35-35-35-35	32-30-28-26	24-20-16-11	
30	34	46-48-50-52	40-42-44-45	40-40-40-40	39-39-39-39	37-35-33-31	31-27-23-18	
35	39	49-51-53-55	44-46-48-49	44-44-44	44-44-44	42-40-38-36	38-34-30-25	
40	44	52-54-56-58	48-50-52-53	48-48-48-48	49-49-49-49	47-45-43-41	45-41-37-32	
45	49	55-57-59-61	51-53-55-56	53-53-53	54-54-54-54	52-50-48-46	51-47-43-38	
50	54	58-60-62-64	55-57-59-60	57-57-57	59-59-59-59	57-55-53-51	56-52-48-43	

^{*} Add 4dB for Aluminium Diffuser

1.49m² Duct
0.372m² Duct
0.092m² Duct
0.023m² Duct

Model: CMP Return

L	P			OCTAVE B	BANDS, Lw		
NC	A-Scale	125*	250	500	1000	2000	4000
15	18	24-29-34-40	26-27-28-29	25-26-27-28	25-25-25-25	22-22-22-21	18-17-16-16
20	23	28-33-38-44	30-31-32-33	29-30-31-32	30-30-30-30	27-27-27-26	24-23-22-22
25	28	33-38-43-49	35-36-37-38	34-35-36-37	35-35-35-35	32-32-31-30	29-28-27-27
30	33	37-42-47-53	39-40-41-42	38-39-40-41	39-39-39-39	37-37-36-35	35-34-33-33
35	38	41-46-51-57	43-44-45-46	42-43-44-45	44-44-44-44	42-42-41-40	41-40-39-39
40	43	46-51-56-62	48-49-50-51	47-48-49-50	49-49-49-49	47-46-45-44	46-45-44-44
45	48	50-55-60-66	52-53-54-55	51-52-53-54	54-54-54	52-51-50-49	51-51-50-50
50	53	54-59-64-70	56-57-58-59	55-56-57-58	59-59-59-59	57-56-55-54	56-56-55-55

^{*} Subtract 9dB for Aluminium Diffuser

1.49m² Duct
0.372m² Duct
0.092m² Duct
0.023m² Duct

Notes on Sound Performance Data

The NC values are obtained from the performance tables on pages 148D to 157D, which are based on 8 dB room attenuation re 10^{-12} watts. The octave band dB values are sound power levels (Lw) re 10^{-12} watts. In the tables above, four values are shown for each octave band and NC value, with the first value for a duct area of $0.023 \, \text{m}^2$, second $0.092 \, \text{m}^2$, third $0.372 \, \text{m}^2$ and fourth for $1.49 \, \text{m}^2$.

The A-scale dB values are based on a 8 dB room attenuation re 10^{-12} watts. Lp - Sound pressure level, dB re 0.0002 microbars.

Lw - Sound power level, dB re 10^{-12} watts.

Example

A 300 x 300 CMP supplies $0.378 \, \text{m}^3/\text{s}$. List the complete sound analysis for this condition. (A 300 x 300 CMP has a duct area of $0.090 \, \text{m}^2$).

The Performance Table on Page 148D shows that a 300×300 CMP supplying 0.378 m³/s satisfies an NC35. The CMP Supply table above lists the following A-scale and octave band sound levels for an NC35 and 0.092 m² duct.

dB,	Lp	Octave Bands - dB, Lw					
NC	Α	125	250	500	1000	2000	4000
35	39	51	46	44	44	40	34

Above octave band sound power levels (Lw) plotted (top curve). The lower curve that satisfies an NC 35 was obtained by subtracting 8 dB (Room Attenuation) from each octave band sound power level.

Performance Data CMP and CMPH — CMP

Notes on Throw Performance Data

- 1. The CMP and CMPH Performance Data in the tables on the following pages (Pages 148D - 157D and 160D - 165D) applies when the outlet is mounted near the ceiling with ceiling effect.
- 2. Where no ceiling effect is present the horizontal throw will be about 25% less than shown in the tables.
- 3. The subsequent downward projection should be taken into account.

Effects of Mounting Position on Air Pattern

RECOMMENDED MAXIMUM AIR FLOW						
Ceiling Height, m.	2.40	2.70	3.00	3.60	4.20	4.80
Air Flow (m³/s) per side	0.095	0.165	0.260	0.425	0.660	0.755

This data is based on 12°C Δt (temperature differential) during cooling.

General Performance Notes

1. Pressure: All pressures are in Pa (N/m²)

> TP = Total Pressure -SP = Negative Static Pressure

2. Throw: Maximum throws are to a terminal velocity of

0.25 m/s, middle to 0.5 m/s, and minimum to

 $0.75 \, \text{m/s}.$

3. Sound: The NC values are based on a room absorption

of 8 dB, re 10^{-12} watts and one steel diffuser. For aluminium diffusers, apply the following

corrections to the listed data:

Supply:	NC = Listed + 3
	TP = Listed x 1.5
	THROW = Listed x 1.0
Return:	NC = Listed + 2
	−SP = Listed x 1.0

CMPH: Where table shows -, NC is below 20.

4. Return Factors: If the unit is used as a return inlet, the performance data is obtained by applying the return factors shown on each table in the following manner:

- a. Sound: Add the factor shown to the NC value listed.
- b. Negative Static Pressure: Multiply the return factor by the total pressure

Return Example:

150 x 150 CMP with 0.071 m³/s being returned through the unit. Return NC = 20 + 1 = 21

Return Pressure (-SP) = TP x 1.1 = 25 (1.1) = 27.5 Pa (N/m²)

5. Size in mm: This is the Diffuser Listed Duct Size or Nominal

Neck Opening

Symbols

m³/s	Cubic metres per second	Pt	Total pressure Pa (= Ps + Pv)
m/s	Metres per second	Δt	Temperature differential, room to supply
Vk	Outlet velocity, m/s	Throw	Distance air travels from diffuser to a given Vt.
Vt	Air stream terminal velocity, m/s		Tables show throws to Vts of 0.75 (min);
Ak	Diffuser or register net jet area, m²		0.5 and 0.25 (max) m/s.
AD or An	Inlet duct or neck area	NC	Noise criteria. Ratings are based on sound
Ps	Static pressure, Pa		power level (SWL) re. 10 ⁻¹² watts minus 8 dB
Pv	Velocity pressure, Pa		room attenuation in all frequency bands.

Note

All ceiling diffusers, seismic restraints are required, but not supplied.

CMP – Performance Data

Size		Patterns	Neck Vel m/s TP Pa		2.10	2.62	3.15	3.67	4.19	4.72
in mm	Return	NC+1	Total m³/s	6 0.036	11 0.047	18 0.059	25 0.071	35 0.083	45 0.094	57 0.106
	Factors	-SP=1.1TP	NC	- А В	7 A B	14 A B	20 A B	24 A B	28 A B	32 A B
150 x 150		41	m³/s side throw m	0.009 1.2 1.5 2.1	0.012 1.5 1.8 2.4	0.015 1.8 2.1 2.7	0.018 1.8 2.1 3.1	0.020 2.1 2.4 3.4	0.024 2.1 2.4 3.4	0.027 2.4 2.7 3.7
		♣ 36	m³/s side throw m	0.009 0.013 1.2 1.5 1.5 2.1 2.1 3.1	0.012 0.018 1.5 1.8 1.8 2.4 2.4 3.4	0.015 0.022 1.8 2.1 2.1 2.7 2.7 4.0	0.018 0.026 1.8 2.1 2.1 3.1 3.1 4.3	0.201 0.031 2.1 2.4 2.4 3.4 3.4 4.6	0.024 0.036 2.1 2.4 2.4 3.4 3.4 4.9	0.027 0.040 2.4 2.7 2.7 3.7 3.7 5.2
AD		34 *	m³/s side throw m	0.018 0.009 1.8 1.2 2.4 1.5 3.1 2.4	0.024 0.012 2.1 1.5 2.7 1.8 3.7 2.7	0.029 0.015 2.4 1.8 3.1 2.1 4.3 3.1	0.036 0.018 2.7 1.8 3.4 2.1 4.6 3.4 0.036	0.041 0.021 2.7 2.1 3.7 2.4 4.9 3.7 0.042	0.047 0.024 3.1 2.1 4.0 2.4 5.2 4.0	0.053 0.027 3.4 2.4 4.3 2.7 5.5 4.3
0.023 m²	21	51	m³/s side throw m m³/s side	0.018 2.1 2.4 3.4 0.035	0.024 2.4 2.7 4.0 0.047	0.029 2.7 3.1 4.6 0.060	3.1 3.4 4.9	3.4 3.7 5.2	0.049 3.4 4.0 5.5 0.094	0.053 3.7 4.3 6.1 0.107
	Return	NC+3	throw m	2.4 3.1 4.3	2.7 3.4 4.9 0.106	3.1 4.0 5.5 0.133	3.4 4.3 6.1	3.7 4.6 6.4 0.186	4.0 4.9 7.0	4.3 5.2 7.3 0.239
	Factors	-SP=1.3TP	NC	A B	11 A B	18 A B	24 A B	28 A B	32 A B	36 A B
225 x 225		41	m³/s side throw m	0.020 1.5 1.8 2.7	0.026 1.8 2.1 3.1	0.033 2.1 2.4 3.4	0.040 2.1 2.7 3.7	0.046 2.4 2.7 4.0	0.053 2.4 3.1 4.3	0.059 2.7 3.4 4.6
		♣ 36	m³/s side throw m	0.020 0.030 1.5 2.1 1.8 2.7 2.7 3.7	0.026 0.040 1.8 2.4 2.1 3.1 3.1 4.3	0.033 0.050 2.1 2.7 2.4 3.4 3.4 4.9	0.040 0.060 2.1 3.1 2.7 3.7 3.7 5.2	0.046 0.070 2.4 3.4 2.7 4.0 4.0 5.5	0.053 0.080 2.4 3.4 3.1 4.3 4.3 6.1	0.060 0.090 2.7 3.7 3.4 4.6 4.6 6.4
AD		34 *	m³/s side throw m	0.034 0.023 2.1 2.1 2.7 2.4 3.7 3.4 0.040	0.044 0.031 2.4 2.4 3.1 2.7 4.3 4.0 0.053	0.056 0.039 2.7 2.7 3.4 3.1 4.9 4.6 0.067	0.067 0.046 3.1 3.1 3.7 3.4 5.2 4.9 0.080	0.078 0.054 3.4 3.4 4.0 3.7 5.5 5.2 0.093	0.089 0.062 3.4 3.4 4.3 4.0 6.1 5.5 0.106	0.100 0.070 3.7 3.7 4.6 4.3 6.4 6.1 0.119
0.051 m²	21	51	m³/s side throw m m³/s side	2.7 3.1 4.6	3.1 3.7 5.2 0.106	3.4 4.3 5.8 0.133	3.7 4.6 6.4 0.160	4.0 4.9 6.7	4.3 5.2 7.3	4.6 5.5 7.9
		■ 11	throw m	3.4 4.3 5.8	4.0 4.9 6.7	4.6 5.5 7.6	4.9 6.1 8.2	5.2 6.4 8.8	5.5 7.0 9.5	6.1 7.3 10.1
	Return Factors	NC+5 -SP=1.4TP	Total m³/s NC	0.142	0.189 14	0.236 21	0.283 27	0.330 31	0.378 35	0.425 39
300 x 300	Tactors	41	m³/s side throw m	A B 0.035 1.8 2.4 3.1	A B 0.047 2.1 2.7 3.7	A B 0.059 2.4 3.1 4.3	A B 0.071 2.7 3.4 4.5	A B 0.083 2.7 3.7 4.9	A B 0.094 3.1 4.0 5.2	A B 0.106 3.4 4.3 5.5
		36 A	m³/s side throw m	0.035 0.053 1.8 2.4 2.4 3.1 3.1 4.3	0.047 0.071 2.1 2.7 2.7 3.4 3.7 4.9	0.059 0.088 2.4 3.1 3.1 4.0 4.3 5.5	0.071 0.106 2.7 3.4 3.4 4.3 4.6 6.1	0.083 0.124 2.7 3.7 3.7 4.6 4.9 5.4	0.094 0.142 3.1 4.0 4.0 4.9 5.2 7.0	0.106 0.160 3.4 4.3 4.3 5.2 5.5 7.3
40		34 *	m³/s side throw m	0.053	0.071 0.059 2.7 2.7 3.4 3.4 4.9 4.9	0.088 0.074 3.1 3.1 4.0 4.0 5.5 5.5	0.106 0.088 3.4 3.4 4.3 4.3 6.1 6.1	0.124 0.103 3.7 3.7 4.6 4.6 6.4 6.4	0.142 0.118 4.0 4.0 4.9 4.9 7.0 7.0	0.160 0.133 4.3 4.3 5.2 5.2 7.3 7.3
AD 0.090 m ²	21	51	m³/s side throw m m³/s side	0.071 3.1 3.7 5.2 0.142	0.094 3.7 4.3 6.1 0.189	0.118 4.3 4.9 7.0 0.236	0.142 4.6 5.2 7.6 0.283	0.165 4.9 5.5 7.9 0.390	0.189 5.2 6.1 8.5 0.378	0.212 5.5 6.4 9.2 0.425
	Return	> 11 NC+5	throw m	4.0 4.9 7.0	4.6 5.5 7.9 0.295	5.2 6.4 9.2 0.368	5.5 6.7 9.8 0.441	6.1 7.3 10.4 0.515	6.4 7.6 11.3 0.590	7.0 8.2 11.9 0.661
	Factors	-SP=1.9TP	NC	7 A B	16 A B	23 A B	29 A B	33 A B	37 A B	41 A B
375 x 375		41	m³/s side throw m	0.055 2.1 2.7 3.7	0.074 2.4 3.1 4.3	0.092 2.7 3.4 4.9	0.110 3.1 3.7 5.2	0.129 3.4 4.0 5.5	0.147 3.4 4.3 6.1	0.165 3.7 4.6 6.4
		₩ 36	m³/s side throw m	0.055 0.083 2.1 3.1 2.7 3.7 3.7 5.2	0.074 0.111 2.4 3.7 3.1 4.3 4.3 6.1	0.092 0.138 2.7 4.3 3.4 4.9 4.9 7.0	0.110 0.166 3.1 4.6 3.7 5.2 5.2 7.6	0.129 0.193 3.3 4.9 4.0 5.5 5.5 7.9	0.147 0.221 3.4 5.2 4.3 6.1 6.1 8.5	0.165 0.249 3.7 5.5 4.6 6.4 6.4 9.2
			m³/s side throw m	0.077 0.072 2.7 2.7	0.103 0.096 3.1 3.1	0.129 0.119 3.4 3.4	0.154 0.144 3.7 3.7	0.180 0.158 4.0 4.0	0.206 0.191 4.3 4.3	0.232 0.215 4.6 4.6
AD		34 *		3.4 3.4 4.9 4.9	4.0 4.0 5.5 5.5	4.6 4.6 6.4 6.4	4.9 4.9 6.7 6.7	5.2 5.2 7.3 7.3	5.5 5.5 7.6 7.6	6.1 6.1 8.2 8.2
AD 0.141 m²	21	A 34 * B 51	m³/s side throw m m³/s side							

All ceiling diffusers, seismic restraints are required, but not supplied. *These cores are constructed to give as near as possible equal air flow in A & B directions.

Performance Data - \square \square \square

Size		Patterns	Neck Vel m/s	1.57	2.10	2.62	3.15	3.67	4.19	4.72
in mm	Return	NC+7	TP Pa Total m³/s	6 0.319	11 0.425	18 0.531	25 0.637	35 0.734	45 0.850	57 0.956
	Factors	-SP=2.2TP	NC	9 A B	18 A B	25 A B	31 A B	35 A B	39 A B	43 A B
450 x 450		41	m³/s side throw m	0.079 2.4 3.1 4.3	0.106 2.7 3.4 4.9	0.132 3.1 4.0 5.5	0.159 3.4 4.3 6.1	0.188 3.7 4.6 6.4	0.212 4.0 4.9 7.0	0.238 4.3 5.2 7.3
		№ 36	m³/s side throw m	0.079 0.119 2.4 3.4 3.1 4.3 4.3 5.8	0.106 0.159 2.7 4.0 3.4 4.9 4.9 6.7	0.132 0.199 3.1 4.6 4.0 5.5 5.5 7.6	0.159 0.239 3.4 4.9 4.3 6.1 6.1 8.2	0.186 0.279 3.7 5.2 4.6 6.4 6.4 8.8	0.212 0.319 4.0 5.5 4.9 7.0 7.0 9.5	0.239 0.359 4.3 6.1 5.2 7.3 7.3 10.1
45		34 ∗	m³/s side throw m	0.106 0.106 3.4 3.4 4.3 4.3 5.8 5.8	0.142 0.142 4.0 4.0 4.9 4.9 6.7 6.7	0.177 0.177 4.6 4.6 5.5 5.5 7.6 7.6	0.212 0.212 4.9 4.9 6.1 6.1 8.3 8.3	0.248	0.283	0.319 0.319 6.1 6.1 7.3 7.3 10.1 10.1
AD 0.202 m ²	21	51	m³/s side throw m	0.159 4.0 4.9 7.0 0.319	0.212 4.6 5.5 7.9 0.425	0.265 5.2 6.4 9.2 0.531	0.318 5.5 6.7 9.8 0.638	0.371 6.1 7.3 10.4 0.743	0.425 6.4 7.6 11.3 0.850	0.477 7.0 8.2 11.9 0.956
		□ 11	m³/s side throw m	4.9 6.1 8.5	5.8 7.0 9.8	6.7 7.9 11.3	7.0 8.5 11.9	7.6 9.2 12.8	8.2 10.1 13.7	8.8 10.7 14.6
	Return Factors	NC+9 -SP=2.7TP	Total m³/s NC	0.433 11 A B	0.578 20 A B	0.722 27 A B	0.866 33 A B	1.010 37 A B	1.157 41 A B	1.298 45 A B
525 x 525		41	m³/s side throw m	0.109 2.7 3.4 4.9	0.144 3.1 4.0 5.5	0.180 3.4 4.6 6.4	0.217 3.7 4.9 6.7	0.253 4.0 5.2 7.3	0.289 4.3 5.5 7.6	0.325 4.6 6.1 8.2
		₽ 36	m³/s side throw m	0.109 0.163 2.7 3.7 3.4 4.6 4.9 6.4	0.144 0.217 3.1 4.3 4.0 5.2 5.5 7.3	0.180 0.271 3.4 4.9 4.6 5.8 6.4 8.2	0.217 0.325 3.7 5.2 4.9 6.4 6.7 9.2	0.235 0.379 4.0 5.5 5.2 6.7 7.3 9.8	0.289 0.423 4.3 6.1 5.5 7.3 7.6 10.4	0.325 0.486 4.6 6.4 6.1 7.9 8.2 11.0
		№ 34 *	m³/s side throw m	0.139 0.146 3.4 3.4 4.3 4.3 5.8 5.8	0.186 0.194 4.0 4.0 4.9 4.9 6.7 6.7	0.232 0.243 4.6 4.6 5.5 5.5 7.6 7.6	0.279 0.292 4.9 4.9 6.1 6.1 8.2 8.2	0.325	0.369 0.389 5.5 5.5 7.0 7.0 9.5 9.5	0.418
AD 0.276 m ²	21	51	m³/s side throw m	0.216 4.6 5.5 7.9 0.432	0.289 5.2 6.4 9.2 0.578	0.361 5.8 7.3 10.4 0.723	0.433 6.4 7.9 11.3	0.505 6.7 8.5 12.2 1.010	0.578 7.3 9.2 12.8 1.160	0.649 7.9 9.8 13.7 1.300
		□ 11	m³/s side throw m	5.5 7.0 9.5	0.378 6.4 7.9 11.0	7.3 9.2 12.5	7.9 9.8 13.4	8.5 10.4 14.6	9.2 11.3 15.6	9.8 11.9 16.5
	Return Factors	NC+9 -SP=2.83TP	Total m³/s NC	12 A B	21 A B	28 A B	34 A B	1.320 38 A B	42 A B	46 A B
600 x 600		41	m³/s side throw m	0.142 3.1 3.7 5.2	0.189 3.7 4.3 6.1	0.236 4.3 4.9 7.0	0.283 4.6 5.2	0.330 4.9 5.5	0.378 5.2 6.1	0.425 5.5 6.4 9.2
						۲.0	7.6	7.9	8.5	
		1	m³/s side throw m	0.142 0.212 3.1 4.0 3.7 4.9 5.2 7.0	0.189 0.280 3.7 4.6 4.3 5.5 6.1 7.9	0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2	0.283 0.425 4.6 5.5 5.2 6.7 7.6 9.8	0.330 0.496 4.9 6.1 5.5 7.3 7.9 10.4	0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3	0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9
		36 B 34 *	throw m m³/s side throw m	3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4	3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3	0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2	0.283 0.425 4.6 5.5 5.2 6.7 7.6 9.8 0.425 0.354 5.5 5.2 6.7 6.4 9.8 9.2	0.330 0.496 4.9 6.1 5.5 7.3 7.9 10.4 0.496 0.413 6.1 5.5 7.3 6.7 10.4 9.8	0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4	0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9 0.638 0.531 7.0 6.4 8.2 7.9 11.9 11.0
AD 0.360 m ²	21	A B	m³/s side throw m m³/s side throw m	3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5	3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0	0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9	0.283 0.425 4.6 5.5 5.2 6.7 7.6 9.8 0.425 0.354 5.5 5.2 6.7 6.4 9.8 9.2 0.566 7.0 8.5 11.9	0.330 0.496 4.9 6.1 5.5 7.3 7.9 10.4 0.496 0.413 6.1 5.5 7.3 6.7 10.4 9.8 0.661 7.6 9.2 12.8	0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 0.755 8.2 10.1 13.7	0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9 0.638 0.531 7.0 6.4 8.2 7.9 11.9 11.0 0.850 8.8 10.7 14.6
0.360	~	▼B A 34 * ▼B A 51 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■	m³/s side throw m m³/s side throw m m³/s side throw m	3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1	3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0	0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7	0.283	0.330 0.496 4.9 6.1 5.5 7.3 7.9 10.4 0.496 0.413 6.1 5.5 7.3 6.7 10.4 9.8 0.6661 7.6 9.2	0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 0.755 8.2 10.1	0.425 0.638 5.5 7.0 6.4 8.2 9.2 11.9 0.638 0.531 7.0 6.4 8.2 7.9 11.9 11.0 0.850 8.8 10.7
0.360	Return Factors	→ 34 * 51	throw m m³/s side throw m m³/s side throw m	3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5 0.566 6.1 7.3 10.7	3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0 9.8 0.755 7.0 8.5 12.2 1.180 24 A B	0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9 11.3 0.944 7.9 9.8 14.0	0.283 0.425 4.6 5.5 5.2 6.7 7.6 9.8 0.425 0.354 5.5 5.2 6.7 6.4 9.8 9.2 0.566 7.0 8.5 11.9 1.130 8.5 10.4 14.9	0.330	0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 0.755 8.2 10.4 10.755 10.7	0.425
0.360	Return	→ B 34 * → B 51 → 11 NC+9	m³/s side throw m m³/s side throw m m³/s side throw m	3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5 0.566 6.1 7.3 10.7 0.885	3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0 9.8 0.755 7.0 8.5 12.2 1.180 24 A B 0.295 4.0 4.9 6.7	0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9 11.3 0.944 7.9 9.8 14.0 1.480 31 A B 0.369 4.6 5.5 7.6	0.283	0.330	0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 0.755 8.2 10.1 13.7 1.510 9.8 12.2 17.1 2.360 45 A B 0.590 5.5 7.0 9.5	0.425
0.360 m ² 750 x	Return	→ B 34 * → B 51 → 11 NC+9 -SP=3.3TP	m³/s side throw m m³/s side throw m m³/s side throw m Total m³/s NC m³/s side throw m m³/s side throw m	3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5 0.566 6.1 7.3 10.7 0.885 15 A B 0.221 3.4 4.3 5.8 0.221 0.332 3.4 4.6 4.3 5.5 5.8 7.9	3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0 9.8 0.755 7.0 8.5 12.2 1.180 24 A B 0.295 4.0 4.9 6.7 0.295 0.443 4.0 5.2 4.9 6.4 6.7 9.2	0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9 11.3 0.944 7.9 9.8 14.0 1.480 31 A B 0.369 4.6 5.5 7.6 0.369 0.553 4.6 5.8 5.5 7.3 7.6 10.4	0.283	0.330	0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 0.755 8.2 10.1 13.7 1.510 9.8 12.2 17.1 2.360 45 A B 0.590 5.5 7.0 9.5 0.590 0.885 5.5 7.3 7.0 9.2 9.5 12.8	0.425
750 x 750	Return	→ BA 34 * → BA 34 * → S1 NC+9 -SP=3.3TP → 41	m³/s side throw m m³/s side throw m m³/s side throw m Total m³/s NC m³/s side throw m m³/s side throw m	3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5 0.566 6.1 7.3 10.7 0.885 15 A B 0.221 3.4 4.3 5.8 0.221 0.332 3.4 4.6 4.3 5.8 0.221 0.308 0.289 4.3 4.3 5.8 7.9 0.308 0.289 4.3 4.3 5.2 7.3 7.3	3.7 4.6 4.3 5.5 6.1 7.9 0.283 0.236 4.6 4.3 5.5 5.2 7.9 7.3 0.378 5.8 7.0 9.8 0.755 7.0 8.5 12.2 1.180 24 A B 0.295 4.0 4.9 6.7 0.295 0.443 4.0 5.2 4.9 6.7 0.295 0.443 4.0 5.2 4.9 6.7 0.295 0.443 4.0 5.2 0.412 0.384 4.9 4.9 6.1 6.1 8.5 8.5	0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9 11.3 0.944 7.9 9.8 14.0 1.480 31 A B 0.369 4.6 5.5 7.6 0.369 0.553 4.6 5.8 5.5 7.6 10.4 0.515 0.481 5.5 5.5 7.0 9.8 9.8	0.283	0.330	0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 0.755 8.2 10.1 13.7 1.510 9.8 12.2 17.1 2.360 45 A B 0.590 5.5 7.0 9.5 0.590 0.885 5.5 7.3 7.0 9.2 9.5 12.8 0.820 0.767 7.0 7.0 8.5 8.5 12.2 12.2	0.425
0.360 m ² 750 x	Return	VB A 34 * VB A 34 * DESCRIPTION STATE OF THE PROPERTY OF TH	m³/s side throw m m³/s side throw m m³/s side throw m Total m³/s NC m³/s side throw m m³/s side throw m	3.1 4.0 3.7 4.9 5.2 7.0 0.213 0.177 4.0 3.7 4.9 4.6 7.0 6.4 0.283 4.9 6.1 8.5 0.566 6.1 7.3 10.7 0.885 15 A B 0.221 3.4 4.3 5.8 0.221 3.4 4.3 5.8 0.221 3.4 4.3 5.8 0.221 0.332 3.4 4.3 5.8 0.221 0.332 3.4 4.3 5.8 0.221 0.332 3.4 4.3 5.8 0.221 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.333	3.7	0.236 0.354 4.3 5.2 4.9 6.4 7.0 9.2 0.354 0.295 5.2 4.9 6.4 5.8 9.2 8.2 0.472 6.7 7.9 9.8 14.0 1.480 31 A B 0.369 4.6 5.5 7.6 0.369 0.553 4.6 5.8 5.5 7.3 7.6 10.4 0.515 0.481 5.5 5.5 7.0 7.0	0.283	0.330	0.378 0.567 5.2 6.4 6.1 7.6 8.5 11.3 0.567 0.472 6.4 6.1 7.6 7.3 11.3 10.4 0.755 8.2 10.1 13.7 1.510 9.8 12.2 17.1 2.360 45 A B 0.590 5.5 7.0 9.5 0.590 0.885 5.5 7.3 7.0 9.2 9.5 12.8 0.820 0.767 7.0 8.5 8.5	0.425

 $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions.

CMP – Performance Data

Size		Patterns	Neck Vel m/s	1.5	7	2.10	0	2.6	2	3.1	5	3.6	7	4.1	9	4.77	2
in mm		Tattomo	TP Pa	6		11		18		25		35		45		57	
	Return	NC+11	Total m³/s	1.2	70	1.70	00	2.1	20	2.5	50	2.9	70	3.4	00	3.82	20
	Return		NC	16		25		32		38		42		46		50	
	Factors	-SP=3.8TP		A	В	A	В	A	В	A	В	A	В	A	В	Α	В
		•	m³/s side	0.319		0.425		0.531		0.637		0.743		0.850		0.956	
900		44	throw m	3.7		4.3		4.9		5.2		5.5		6.1		6.4	
X		41		4.6		5.2		5.8		6.4		6.7		7.3		7.9	
900		<u> </u>		6.4		7.3		8.2		9.2		9.8		10.4		11.0	
			m³/s side	0.319	0.477	0.425	0.637	0.531	0.796	0.637	0.956	0.743	1.120	0.850	1.270	0.956	1.430
		36	throw m	3.7	4.9	4.3	5.0	4.9	6.7	5.2	7.0	5.5	7.6	6.1	8.2	6.4	8.8
		A 36		4.6	6.1	5.2	8.7	5.8	7.9	6.4	8.5	6.7	9.2	7.3	10.1	7.9	10.7
		▼B		6.4	8.5	7.3	9.8	8.2	11.3	9.2	11.9	9.8	12.8	10.4	13.7	11.0	14.6
			m³/s side	0.425	0.425	0.566	0.566	0.708	0.708	0.850	0.850	0.991	0.991	1.130	1.130	1.270	1.270
		■ 34 *	throw m	0.2	4.9	5.8	5.8	6.7	6.7	7.0	7.0	7.6	7.6	8.2	8.2	8.8	8.8
		A S		6.1 8.5	6.1 8.5	7.0 9.8	7.0 9.8	7.9 11.3	7.9	8.5	8.5	9.2 12.8	9.2 12.8	10.1 13.7	10.1	10.7	10.7
AD		<u> </u>	3/:-	0.637	0.5	9.8 0.850	9.0	11.3	11.3	11.9 1.270	11.9	1.490	12.0	1.700	13.7	14.6 1.910	14.6
0.81	A		m³/s side	6.1		7.0		7.9		8.5		9.2		9.8		1.910	
m ²	21	51	throw m	7.3		8.5		9.8		10.4		11.3		12.2		12.8	
	7	811111		10.7		12.2		14.0		14.9		16.2		17.1		18.3	
			m³/s side	1.270	•	1.700	•	2.120	• • • • • • • • • • • • • • • • • • • •	2.550	•	2.970	•	3.400	• · · · · · · · · · · · · · · · · · · ·	3.820	
			throw m	7.6		8.8		10.1		11.0		11.6		12.5		13.4	
		11	CIII OW III	9.2		10.7		12.2		13.1		14.0		14.9		16.2	
				13.1		15.3		17.4		18.6		20.1		21.7		22.9	
	Return	NC 44	T-4-13/-	2.2	70	3.02	20		0.0	4.5					40		20
		NI.+14	Total m ³ /s	2.2	ru	3.0	20	3.7	BU	4.5	30	5.2	90	6.0	4U	6.80	JU
	-	NC+14	NC	19		28		35		4.5.		5.29 45		6.0 ₄		53	
	Factors	NL+14 -SP=4.5TP	NC	19 A	В	28 A	20 В	35 A	В	41 A	30 B	45 A	90 B	49 A	4U B	53 A	B .
	Factors			19 A 0.566		28 A 0.755		35 A 0.944		41 A 1.130		45 A 1.320		49 A 1.510		53 A 1.700	
1200	Factors	-SP=4.5TP	NC	19 A 0.566 4.6		28 A 0.755 5.2		35 A 0.944 5.8		41 A 1.130 6.4		45 A 1.320 6.7		49 A 1.510 7.3		53 A 1.700 7.9	
X	Factors		NC m³/s side	19 A 0.566 4.6 5.5		28 A 0.755 5.2 6.4		35 A 0.944 5.8 7.3		41 A 1.130 6.4 7.9		45 A 1.320 6.7 8.5		49 A 1.510 7.3 9.2		53 A 1.700 7.9 9.8	
	Factors	-SP=4.5TP	NC m³/s side throw m	19 A 0.566 4.6 5.5 7.9	В	28 A 0.755 5.2 6.4 9.2	В	35 A 0.944 5.8 7.3 10.4	В	41 A 1.130 6.4 7.9 11.3	В	45 A 1.320 6.7 8.5 12.2	В	49 A 1.510 7.3 9.2 12.8	В	53 A 1.700 7.9 9.8 13.7	В
X	Factors	-SP=4.5TP	m ³ /s side throw m m ³ /s side	19 A 0.566 4.6 5.5 7.9 0.566	B 0.850	28 A 0.755 5.2 6.4 9.2 0.755	B 1.130	35 A 0.944 5.8 7.3 10.4 0.944	B 1.420	41 A 1.130 6.4 7.9 11.3 1.130	B 1.700	45 A 1.320 6.7 8.5 12.2 1.320	B 1.980	49 A 1.510 7.3 9.2 12.8 1.510	B 2.270	53 A 1.700 7.9 9.8 13.7 1.700	B 2.550
X	Factors	-SP=4.5TP 41	NC m³/s side throw m	19 A 0.566 4.6 5.5 7.9 0.566 4.6	0.850 6.1	28 A 0.755 5.2 6.4 9.2 0.755 5.2	1.130 7.0	35 A 0.944 5.8 7.3 10.4 0.944 5.8	1.420 7.9	41 A 1.130 6.4 7.9 11.3 1.130 6.4	1.700 8.5	45 A 1.320 6.7 8.5 12.2 1.320 6.7	1.980 9.2	49 A 1.510 7.3 9.2 12.8 1.510 7.3	2.270 9.8	53 A 1.700 7.9 9.8 13.7 1.700 7.9	2.550 10.7
X	Factors	-SP=4.5TP	m ³ /s side throw m m ³ /s side	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5	0.850 6.1 7.3	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4	1.130 7.0 8.5	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3	1.420 7.9 9.8	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9	1.700 8.5 10.4	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5	1.980 9.2 11.3	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2	2.270 9.8 12.2	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8	2.550 10.7 12.8
X	Factors	-SP=4.5TP 41	m ³ /s side throw m m ³ /s side throw m	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5 7.9	0.850 6.1	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4 92.0	1.130 7.0 8.5 12.2	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3 10.4	1.420 7.9 9.8 14.0	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9 11.3	1.700 8.5 10.4 14.9	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5 12.2	1.980 9.2 11.3 16.2	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2 12.8	2.270 9.8 12.2 17.1	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8 13.7	2.550 10.7 12.8 18.3
X	Factors	-SP=4.5TP 41 A 36	m ³ /s side throw m m ³ /s side throw m	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5 7.9 0.779	0.850 6.1 7.3 10.7 0.743	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4 92.0 1.040	1.130 7.0 8.5 12.2 0.991	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3 10.4 1.300	1.420 7.9 9.8 14.0	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9 11.3 1.560	1.700 8.5 10.4 14.9	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5 12.2 1.820	1.980 9.2 11.3	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2 12.8 2.080	2.270 9.8 12.2 17.1 1.980	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8	2.550 10.7 12.8 18.3 2.230
X	Factors	-SP=4.5TP 41	m ³ /s side throw m m ³ /s side throw m	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5 7.9	0.850 6.1 7.3 10.7	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4 92.0	1.130 7.0 8.5 12.2	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3 10.4	1.420 7.9 9.8 14.0	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9 11.3	1.700 8.5 10.4 14.9	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5 12.2	1.980 9.2 11.3 16.2	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2 12.8	2.270 9.8 12.2 17.1	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8 13.7 2.340	2.550 10.7 12.8 18.3
X	Factors	-SP=4.5TP 41 A 36	m ³ /s side throw m m ³ /s side throw m	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5 7.9 0.779 5.8	0.850 6.1 7.3 10.7 0.743 5.8	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4 92.0 1.040 6.7	1.130 7.0 8.5 12.2 0.991 6.7	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3 10.4 1.300 7.6	1.420 7.9 9.8 14.0 1.240 7.6	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9 11.3 1.560 8.2	1.700 8.5 10.4 14.9 1.440 8.2	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5 12.2 1.820 8.8	1.980 9.2 11.3 16.2 1.740 8.8	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2 12.8 2.080 9.5	2.270 9.8 12.2 17.1 1.980 9.5	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8 13.7 2.340 10.1	2.550 10.7 12.8 18.3 2.230 10.1
X 1200	Factors	-SP=4.5TP 41 A 36	m ³ /s side throw m m ³ /s side throw m	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5 7.9 0.779 5.8 7.3	0.850 6.1 7.3 10.7 0.743 5.8 7.3	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4 92.0 1.040 6.7 8.2	1.130 7.0 8.5 12.2 0.991 6.7 8.2	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3 10.4 1.300 7.6 9.5	1.420 7.9 9.8 14.0 1.240 7.6 9.5	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9 11.3 1.560 8.2 10.1	1.700 8.5 10.4 14.9 1.440 8.2 10.1	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5 12.2 1.820 8.8 11.0	1.980 9.2 11.3 16.2 1.740 8.8 11.0	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2 12.8 2.080 9.5 11.6	2.270 9.8 12.2 17.1 1.980 9.5 11.6	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8 13.7 2.340 10.1 12.5	2.550 10.7 12.8 18.3 2.230 10.1 12.5
x 1200		-SP=4.5TP 41 A 36 B A 34 *	m ³ /s side throw m m ³ /s side throw m m ³ /s side throw m m ³ /s side	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5 7.9 0.779 5.8 7.3 10.1	0.850 6.1 7.3 10.7 0.743 5.8 7.3	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4 92.0 1.040 6.7 8.2 11.6	1.130 7.0 8.5 12.2 0.991 6.7 8.2	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3 10.4 1.300 7.6 9.5 13.1	1.420 7.9 9.8 14.0 1.240 7.6 9.5	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9 11.3 1.560 8.2 10.1 14.3	1.700 8.5 10.4 14.9 1.440 8.2 10.1	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5 12.2 1.820 8.8 11.0 15.3	1.980 9.2 11.3 16.2 1.740 8.8 11.0	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2 12.8 2.080 9.5 11.6 16.5	2.270 9.8 12.2 17.1 1.980 9.5 11.6	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8 13.7 2.340 10.1 12.5 17.4	2.550 10.7 12.8 18.3 2.230 10.1 12.5
X 1200	Factors	-SP=4.5TP 41 A 36	m ³ /s side throw m m ³ /s side throw m	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5 7.9 0.779 5.8 7.3 10.1 1.130 7.6 9.2	0.850 6.1 7.3 10.7 0.743 5.8 7.3	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4 92.0 1.040 6.7 8.2 11.6 1.510 8.8 10.7	1.130 7.0 8.5 12.2 0.991 6.7 8.2	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3 10.4 1.300 7.6 9.5 13.1 1.890 10.1 12.2	1.420 7.9 9.8 14.0 1.240 7.6 9.5	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9 11.3 1.560 8.2 10.1 14.3 2.270 11.0 13.1	1.700 8.5 10.4 14.9 1.440 8.2 10.1	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5 12.2 1.820 8.8 11.0 15.3 2.640 11.6 14.0	1.980 9.2 11.3 16.2 1.740 8.8 11.0	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2 12.8 2.080 9.5 11.6 16.5 3.020 12.5 14.9	2.270 9.8 12.2 17.1 1.980 9.5 11.6	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8 13.7 2.340 10.1 12.5 17.4 3.400 13.4 16.2	2.550 10.7 12.8 18.3 2.230 10.1 12.5
X 1200 AD 1.44		-SP=4.5TP 41 A 36 B A 34 *	m ³ /s side throw m m ³ /s side throw m m ³ /s side throw m m ³ /s side	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5 7.9 0.779 5.8 7.3 10.1 1.130 7.6 9.2 13.1	0.850 6.1 7.3 10.7 0.743 5.8 7.3	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4 92.0 1.040 6.7 8.2 11.6 1.510 8.8 10.7 15.3	1.130 7.0 8.5 12.2 0.991 6.7 8.2	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3 10.4 1.300 7.6 9.5 13.1 1.890 10.1 12.2 17.4	1.420 7.9 9.8 14.0 1.240 7.6 9.5	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9 11.3 1.560 8.2 10.1 14.3 2.270 11.0 13.1 18.6	1.700 8.5 10.4 14.9 1.440 8.2 10.1	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5 12.2 1.820 8.8 11.0 15.3 2.640 11.6 14.0 20.1	1.980 9.2 11.3 16.2 1.740 8.8 11.0	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2 12.8 2.080 9.5 11.6 16.5 3.020 12.5 14.9 21.7	2.270 9.8 12.2 17.1 1.980 9.5 11.6	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8 13.7 2.340 10.1 12.5 17.4 3.400 13.4 16.2 22.9	2.550 10.7 12.8 18.3 2.230 10.1 12.5
X 1200 AD 1.44		-SP=4.5TP 41 A 36 B A 34 *	m ³ /s side throw m m ³ /s side throw m m ³ /s side throw m m ³ /s side	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5 7.9 0.779 5.8 7.3 10.1 1.130 7.6 9.2 13.1 2.270	0.850 6.1 7.3 10.7 0.743 5.8 7.3	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4 92.0 1.040 6.7 8.2 11.6 1.510 8.8 10.7 15.3	1.130 7.0 8.5 12.2 0.991 6.7 8.2	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3 10.4 1.300 7.6 9.5 13.1 1.890 10.1 12.2 17.4	1.420 7.9 9.8 14.0 1.240 7.6 9.5	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9 11.3 1.560 8.2 10.1 14.3 2.270 11.0 13.1 18.6 4.530	1.700 8.5 10.4 14.9 1.440 8.2 10.1	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5 12.2 1.820 8.8 11.0 15.3 2.640 11.6 14.0 20.1	1.980 9.2 11.3 16.2 1.740 8.8 11.0	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2 12.8 2.080 9.5 11.6 16.5 3.020 12.5 14.9 21.7	2.270 9.8 12.2 17.1 1.980 9.5 11.6	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8 13.7 2.340 10.1 12.5 17.4 3.400 13.4 16.2 22.9 6.800	2.550 10.7 12.8 18.3 2.230 10.1 12.5
X 1200 AD 1.44		-SP=4.5TP 41 A 36 B 34 * 51	m³/s side throw m m³/s side throw m m³/s side throw m m³/s side throw m	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5 7.9 0.779 5.8 7.3 10.1 1.130 7.6 9.2 13.1 2.270 9.2	0.850 6.1 7.3 10.7 0.743 5.8 7.3	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4 92.0 1.040 6.7 8.2 11.6 1.510 8.8 10.7 15.3 3.020 10.7	1.130 7.0 8.5 12.2 0.991 6.7 8.2	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3 10.4 1.300 7.6 9.5 13.1 1.890 10.1 12.2	1.420 7.9 9.8 14.0 1.240 7.6 9.5	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9 11.3 1.560 8.2 10.1 14.3 2.270 11.0 13.1 18.6 4.530 13.1	1.700 8.5 10.4 14.9 1.440 8.2 10.1	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5 12.2 1.820 8.8 11.0 15.3 2.640 11.6 14.0 20.1 5.290 14.0	1.980 9.2 11.3 16.2 1.740 8.8 11.0	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2 12.8 2.080 9.5 11.6 16.5 3.020 12.5 14.9	2.270 9.8 12.2 17.1 1.980 9.5 11.6	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8 13.7 2.340 10.1 12.5 17.4 3.400 13.4 16.2 22.9 6.800 16.2	2.550 10.7 12.8 18.3 2.230 10.1 12.5
X 1200 AD 1.44		-SP=4.5TP 41 A 36 B A 34 *	m³/s side throw m m³/s side throw m m³/s side throw m m³/s side throw m	19 A 0.566 4.6 5.5 7.9 0.566 4.6 5.5 7.9 0.779 5.8 7.3 10.1 1.130 7.6 9.2 13.1 2.270	0.850 6.1 7.3 10.7 0.743 5.8 7.3	28 A 0.755 5.2 6.4 9.2 0.755 5.2 6.4 92.0 1.040 6.7 8.2 11.6 1.510 8.8 10.7 15.3	1.130 7.0 8.5 12.2 0.991 6.7 8.2	35 A 0.944 5.8 7.3 10.4 0.944 5.8 7.3 10.4 1.300 7.6 9.5 13.1 1.890 10.1 12.2 17.4	1.420 7.9 9.8 14.0 1.240 7.6 9.5	41 A 1.130 6.4 7.9 11.3 1.130 6.4 7.9 11.3 1.560 8.2 10.1 14.3 2.270 11.0 13.1 18.6 4.530	1.700 8.5 10.4 14.9 1.440 8.2 10.1	45 A 1.320 6.7 8.5 12.2 1.320 6.7 8.5 12.2 1.820 8.8 11.0 15.3 2.640 11.6 14.0 20.1	1.980 9.2 11.3 16.2 1.740 8.8 11.0	49 A 1.510 7.3 9.2 12.8 1.510 7.3 9.2 12.8 2.080 9.5 11.6 16.5 3.020 12.5 14.9 21.7	2.270 9.8 12.2 17.1 1.980 9.5 11.6	53 A 1.700 7.9 9.8 13.7 1.700 7.9 9.8 13.7 2.340 10.1 12.5 17.4 3.400 13.4 16.2 22.9 6.800	2.550 10.7 12.8 18.3 2.230 10.1 12.5

 $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions.

	Gui	de Product Wei	ghts								
	Appro	ximate Weight	t in Kg.								
Size	Size CMPA141 CMPA136 CMPA151										
150 x 150	0.60	0.65	0.54	0.53							
225 x 225	0.80	0.80	0.83	0.81							
300 x 300	1.20	1.32	1.18	1.14							
375 x 375	1.60	1.56	1.66	1.60							
450 x 450	2.00	1.91	2.14	2.10							

		de Product Wei	<u> </u>									
	Approximate Weight in Kg.											
Size	CMPA111	CMPA241	CMP-S	CMPS141								
150 x 150	0.51	2.60	PANEL	1.00								
225 x 225	0.79	2.70	595 SO	1.50								
300 x 300	1.13	2.70	33334	1.90								
375 x 375	1.56	2.70	2.00	2.98								
450 x 450	2.03	2.70	2.00	3.40								

150D — © Holyoake by Price – 2023

Performance Data - \square \square \square

Size	Patterns	Neck Vel m/s	2.01		2.10		2.62		3.15		3.67		4.19		4.72	
in mm	Return NC+0	TP Pa Total m³/s	0.053		0.071		18 0.088		25 0.106		35 0.124		45 0.142		57 0.159	
	Factors -SP=1.3 TP	NC	A	В	10 A	В	17 A	В	23 A	В	27 A	В	31 A	В	35 A	В
150 x 225	A 43	m³/s side throw m	1.8 1. 2.4 1. 3.1 2.	.008 2 5	0.023 2.1 2.7 3.7	0.011 1.5 1.8 2.4	0.029 2.4 3.1 4.3	0.015 1.8 2.1 2.7	0.035 2.7 3.4 4.6	0.017 1.8 2.1 3.1	0.041 2.7 3.7 4.9	0.021 2.1 2.4 3.4	0.047 3.1 4.0 5.2	0.024 2.1 2.4 3.4	0.053 3.4 4.3 5.5	0.026 2.4 2.7 3.7
	A 31	m³/s side throw m	2.1 1. 2.4 1.	.008 2 5 1	0.029 2.4 2.7 4.0	0.012 1.5 1.8 2.4	0.037 2.7 3.1 4.6	0.015 1.8 2.1 2.7	0.044 3.1 3.4 4.9	0.017 1.8 2.1 3.1	0.052 3.4 3.7 5.2	0.021 2.1 2.4 3.4	0.059 3.4 4.0 5.5	0.024 2.1 2.4 3.4	0.066 3.7 4.3 6.1	0.026 2.4 2.7 3.7
	A 33	m³/s side throw m	1.8 1. 2.4 1.	.017 5 8 !.7	0.026 2.1 2.7 3.7	0.022 1.8 2.1 3.1	0.033 2.4 3.1 4.3	0.027 2.1 2.4 3.4	0.040 2.7 3.4 4.6	0.033 2.1 2.7 3.7	0.046 2.7 3.7 4.9	0.039 2.4 2.7 4.0	0.053 3.1 4.0 5.2	0.044 2.4 3.1 4.3	0.060 3.4 4.3 5.5	0.050 2.7 3.4 4.6
	B B 37	m³/s side throw m	1.8 1. 2.4 2.	.017 8 4 1	0.024 2.1 2.7 3.7	0.024 2.1 2.7 3.7	0.029 2.4 3.1 4.3	0.029 2.4 3.1 4.3	0.035 2.7 3.4 4.6	0.035 2.7 3.4 4.6	0.041 2.7 3.7 4.9	0.041 2.7 3.7 4.9	0.047 3.1 4.0 5.2	0.047 3.1 4.0 5.2	0.053 3.4 4.3 5.5	0.053 3.4 4.3 5.5
	A 22, 23	m³/s side throw m	0.026 2.4 3.1 4.0		0.035 2.7 3.4 4.6		0.044 3.1 4.0 5.2		0.053 3.4 4.3 5.5		0.062 3.7 4.6 6.1		0.071 4.0 4.9 6.4		0.079 4.3 5.2 7.0	
0.033 m ²	52 B 54 53	m³/s side throw m	0.035 0. 2.4 1. 3.1 2.	.017 .8 .4 .0	0.047 2.7 3.4 4.9	0.024 2.1 2.7 3.6	0.059 3.1 4.0 5.5	0.029 2.4 3.1 4.3	0.071 3.4 4.3 6.1	0.035 2.7 3.4 4.6	0.083 3.7 4.6 6.4	0.044 2.7 3.7 4.9	0.094 4.0 4.9 7.0	0.047 3.1 4.0 5.2	0.106 4.3 5.2 7.3	0.053 3.4 4.3 5.5
	12, 13	m³/s side throw m	0.053 3.1 3.7 5.2		0.071 3.7 4.3 6.1	5.5	0.088 4.3 4.8 7.0		0.106 4.6 5.2 7.6		0.124 4.9 5.5 7.9		0.142 5.2 6.1 8.5	V.E	0.159 5.5 6.4 9.2	J.J
	Return NC+2 Factors -SP=1.7TP	Total m³/s NC	0.071 - A	В	0.094 11	В	0.118 18	В	0.142 24	В	0.165 28	В	0.189 32	В	0.212 36	В
150 x 300	A 43	m³/s side throw m	0.026 0. 2.4 1. 3.1 1.	.009 2 5	0.035 2.7 3.4 4.6	0.012 1.5 1.8 2.4	0.044 3.1 4.0 5.2	0.015 1.8 2.1 2.7	0.055 3.4 4.3 5.5	0.018 1.8 2.1 3.1	0.062 3.7 4.6 6.1	0.021 2.1 2.4 3.4	0.071 4.0 4.9 6.4	0.024 2.1 2.4 3.4	0.080 4.3 5.2 7.3	0.026 2.4 2.7 3.7
	B 45 *	m³/s side throw m	0.018 0. 2.1 2. 2.4 2.	.018 .1 .4	0.024 2.4 2.7 4.0	0.024 2.4 2.7 4.0	0.029 2.7 3.1 4.6	0.029 2.7 3.1 4.6	0.035 3.1 3.4 4.9	0.035 3.1 3.4 4.9	0.041 3.4 3.7 5.2	0.041 3.4 3.7 5.2	0.047 3.4 4.0 5.5	0.047 3.4 4.0 5.5	0.053 3.7 4.3 6.1	0.053 3.7 4.3 6.1
	A 31	m³/s side throw m	2.4 1. 3.1 1.	.009 2 5	0.041 2.7 3.4 4.9	0.012 1.5 1.8 2.4	0.052 3.1 4.0 5.5	0.015 1.8 2.1 2.7	0.062 3.4 4.3 6.1	0.018 1.8 2.1 3.1	0.072 3.7 4.6 6.4	0.020 2.1 2.4 3.4	0.083 4.0 4.9 7.0	0.024 2.1 2.4 3.4	0.093 4.6 5.5 7.9	0.026 2.4 2.7 3.7
	33	m³/s side throw m	1.8 1. 2.4 2.	.018 8 4 1	0.047 2.1 2.7 3.7	0.024 2.1 2.7 3.7	0.060 2.4 3.1 4.3	0.029 2.4 3.1 4.3	0.071 2.7 3.4 4.6	0.035 2.7 3.4 4.6	0.083 2.7 3.7 4.9	0.041 2.7 3.7 4.9	0.094 3.1 4.0 5.2	0.047 3.1 4.0 5.2	0.107 3.4 4.3 5.5	0.053 3.4 4.3 5.5
	B 37	m³/s side throw m	2.4 2. 3.1 2.	.022 .1 .7 .7	0.035 2.7 3.4 4.6	0.029 2.4 3.1 4.3	0.044 3.1 4.0 5.2	0.037 2.7 3.4 4.9	0.053 3.4 4.3 5.5	0.044 3.1 3.7 5.2	0.062 3.7 4.6 6.1	0.052 3.4 4.0 5.5	0.071 4.0 4.9 6.4	A59 3.4 4.3 6.1	0.080 4.3 5.2 7.0	0.066 3.7 4.6 6.4
	^A 22, 23	m³/s side throw m	0.035 2.4 3.1 4.3		0.047 2.7 3.4 4.9		0.059 3.1 4.0 5.5		0.071 3.4 4.3 6.1		0.083 3.7 4.6 6.4		0.094 4.0 4.9 7.0		0.106 4.3 5.2 7.3	
AD 0.045 m ²	52 55 54 53	m³/s side throw m	0.053 0. 3.1 1. 3.7 2.	.018 .8 .4 .1	0.071 3.7 4.3 6.1	0.024 2.1 2.7 3.7	0.089 4.3 4.9 7.0	0.029 2.4 3.1 4.3	0.106 4.6 5.2 7.6	0.035 2.7 3.4 4.6	0.124 4.9 5.5 7.9	0.041 2.7 3.7 4.9	0.142 5.2 6.1 8.5	0.047 3.1 4.0 5.2	0.160 5.5 6.4 9.2	0.053 3.4 4.3 5.5
	12, 13	m³/s side throw m	0.071 3.1 3.7 5.2		0.094 3.7 4.3 6.1		0.118 4.3 4.9 7.0		0.142 4.6 5.2 7.6		0.165 4.9 5.5 7.9		0.189 5.2 6.1 8.5		0.212 5.5 6.4 9.2	
	Return NC+2 Factors -SP=2.0TP	Total m³/s NC	0.089 - A	В	0.118 12 A	В	0.147 19 A	В	0.177 25 A	В	0.207 29 A	В	0.236 33 A	В	0.266 37 A	В
150 x 375	43 A	m³/s side throw m	2.4 1. 3.1 1.	009 2 5 1	0.047 2.7 3.4 4.9	0.012 1.5 1.8 2.4	0.059 3.1 4.0 5.5	0.015 1.8 2.1 2.7	0.071 3.4 4.3 6.1	0.018 1.8 2.1 3.1	0.083 3.7 4.6 6.4	0.021 2.1 2.4 3.4	0.094 4.0 4.9 7.0	0.024 2.1 2.4 3.4	0.106 4.3 5.2 7.3	0.026 2.4 2.7 3.7
	B 45 *	m³/s side throw m	0.018 0. 2.1 2. 2.4 3.	.026 .4 .1 .0	0.024 2.4 2.7 4.0	0.035 2.7 3.4 4.6	0.029 2.7 3.1 4.6	0.044 3.1 4.0 5.2	0.035 3.1 3.4 4.9	0.053 3.4 4.3 5.5	0.041 3.4 3.7 5.2	0.062 3.7 4.6 6.1	0.047 3.4 4.0 5.5	0.071 4.0 4.9 6.4	0.053 3.7 4.3 6.1	0.080 4.3 5.2 7.0
	31	m³/s side throw m	0.040 0. 2.7 1. 3.1 1.	.009 2 5 1	0.053 3.1 3.7 5.2	0.012 1.5 1.8 2.4	0.066 3.4 4.3 5.8	0.015 1.8 2.1 2.7	0.080 3.7 4.6 6.4	0.018 1.8 2.1 3.1	0.093 4.0 4.9 6.7	0.021 2.1 2.4 3.4	0.106 4.3 5.2 7.3	0.024 2.1 2.4 3.4	0.119 4.6 5.5 7.9	0.026 2.4 2.7 3.7
	A 33	m³/s side throw m	0.053 0. 2.7 1. 3.1 2.	.018 .8 .4 .1	0.071 3.1 3.7 5.2	0.024 2.1 2.7 3.7	0.089 3.4 4.3 5.8	0.029 2.4 3.1 4.3	0.106 3.7 4.6 6.4	0.035 2.7 3.4 4.6	0.125 4.0 4.9 6.7	0.041 2.7 3.7 4.9	0.142 4.3 5.2 7.3	0.047 3.1 4.0 5.2	0.160 4.6 5.5 7.9	0.053 3.4 4.3 5.5
	37	m³/s side throw m	0.026 0. 2.4 2. 3.1 3.	.031 .4 .1	0.035 2.7 3.4 4.6	0.042 2.7 3.4 4.9	0.044 3.1 4.0 5.2	0.052 3.1 4.0 5.5	0.055 3.4 4.3 5.5	0.062 3.4 4.3 6.1	0.062 3.7 4.6 6.1	0.072 3.7 4.6 6.4	0.071 4.0 4.9 6.4	0.083 4.0 4.9 7.0	0.080 4.3 5.2 7.0	0.093 4.3 5.2 7.3
	^A 22, 23	m³/s side throw m	0.044 2.7 3.4 4.9		0.059 3.1 4.0 5.5		0.074 3.4 4.6 6.4		0.088 3.7 4.9 6.7		0.103 4.0 5.2 7.3		0.118 4.3 5.5 7.6		0.133 4.6 6.1 8.2	
0.056 m ²	52 55 54 53	m³/s side throw m	0.071 0. 3.1 1. 3.7 2.	.018 .8 .4	0.094 3.7 4.3 6.1	0.024 2.1 2.7 3.7	0.118 4.3 4.9 7.0	0.029 2.4 3.1 4.3	0.142 4.6 5.2 7.6	0.035 2.7 3.4 4.6	0.165 4.9 5.5 7.9	0.041 2.7 3.7 4.9	0.189 5.2 6.1 8.5	0.047 3.1 4.0 5.2	0.212 5.5 6.4 9.2	0.053 3.4 4.3 5.5
	12, 13	m³/s side throw m	0.089 3.4 4.3 5.8		0.118 4.0 4.9 6.7		0.147 4.6 5.5 7.6		0.177 4.9 6.1 8.2	:	0.207 5.2 6.4 8.8		0.236 5.5 7.0 9.5		0.266 6.1 7.3 10.1	

 $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions.

CMP – Performance Data

Size	Patterns	Neck Vel m/s	1.57	2.10	2.62	3.15	3.67	4.19	4.72
in mm	Return NC+3	TP Pa Total m³/s	6 0.106	0.142	18 0.177	25 0.212	35 0.248	45 0.283	57 0.319
	Factors -SP=2.8 TP	NC	- А В	13 A B	20 A B	26 A B	30 A B	34 A B	38 A B
150 x 450	43 A3	m³/s side throw m	0.044 0.00 2.7 1.2 3.4 1.5 4.9 2.1	3.1 1.5 4 1.8 5.5 2.4	0.074 0.015 3.4 1.8 4.6 2.1 6.4 2.7	0.089 0.018 3.7 1.8 4.9 2.1 6.7 3.1	0.103 0.021 4 2.1 5.2 2.4 7.3 3.4	0.118 0.024 4.3 2.1 5.5 2.4 7.6 3.4	0.133 0.026 4.6 2.4 6.1 2.7 8.2 3.7
	B 45 *	m³/s side throw m	0.026 0.02 2.4 2.4 3.1 3.1 4.0 4.0	2.7 2.7 3.4 3.4 4.6 4.6	0.044 0.044 3.1 3.1 4.0 4.0 5.2 5.2	0.053 0.053 3.4 3.4 4.3 4.3 5.5 5.5	0.062 0.062 3.7 3.7 4.6 4.6 6.1 6.1	0.071 0.071 4.0 4.0 4.9 4.9 6.4 6.4	0.080 0.080 4.3 4.3 5.2 5.2 7.0 7.0
	31	m³/s side throw m m³/s side	0.049 0.00 2.7 1.2 3.4 1.5 4.9 2.1 0.071 0.01	3.1 1.5 4.0 1.8 5.5 2.4	0.081 0.015 3.4 1.8 4.6 2.1 6.4 2.7 0.119 0.029	0.097 0.018 3.7 1.8 4.9 2.1 6.7 3.1 0.142 0.035	0.113 0.021 4.0 2.1 5.2 2.4 7.3 3.4 0.166 0.041	0.130 0.024 4.3 2.1 5.5 2.4 7.6 3.4 0.189 0.047	0.146 0.026 4.6 2.4 6.1 2.7 8.2 3.7 0.213 0.053
	A 33	throw m	3.1 1.8 3.7 2.4 5.2 3.1 0.035 0.03	3.7 2.1 4.3 2.7 6.1 3.7	4.3 2.4 4.9 3.1 7.0 4.3 0.059 0.059	4.6 2.7 5.2 3.4 7.6 4.6 0.071 0.071	4.9 2.7 5.5 3.7 7.9 4.9 0.083 0.083	5.2 3.1 6.1 4.0 8.5 5.2 0.094 0.094	5.5 3.4 6.4 4.3 9.2 5.5 0.106 0.106
	B 37	throw m	2.4 2.4 3.1 3.1 4.3 4.3 0.053	2.7 2.7 3.4 3.4 4.9 4.9 0.071	3.1 3.1 4.0 4.0 5.5 5.5 0.088	3.4 3.4 4.3 4.3 6.1 6.1 0.106	3.7 3.7 4.6 4.6 6.4 6.4 0.124	4.0 4.0 4.9 4.9 7.0 7.0 0.142	4.3 4.3 5.2 5.2 7.3 7.3 0.159
AD	^A 22, 23	throw m m³/s side	3.1 3.7 5.2 0.088 0.01	3.7 4.3 6.1 8 0.118 0.024	4.3 4.9 7.0 0.148 0.029	4.6 5.2 7.6 0.177 0.035	4.9 5.5 7.9 0.207 0.041	5.2 6.1 8.5 0.236 0.047	5.5 6.4 9.2 0.266 0.053
0.068 m ²	52 55 54 55 53	throw m m³/s side	3.4 1.8 4.3 2.4 5.8 3.1 0.106	4.0 2.1 4.9 2.7 6.7 3.7 0.142	4.6 2.4 5.5 3.1 7.6 4.3 0.177	4.9 2.7 6.1 3.4 8.2 4.6 0.212	5.2 2.7 6.4 3.7 8.8 4.9 0.248	5.5 3.1 7.0 4.0 9.5 5.2 0.283	6.1 3.4 7.3 4.3 10.1 5.5 0.319
	12, 13 Return NC+4	throw m Total m ³ /s	3.7 4.6 6.4 0.124	4.3 5.2 7.3 0.165	4.9 5.8 8.2 0.206	5.2 6.4 9.2 0.248	5.5 6.7 9.8 0.289	6.1 7.3 10.4 0.330	6.4 7.9 11.0 0.372
	Factors -SP=3.4TP	NC m³/s side	- A B 0.053 0.00		A B 0.088 0.015	26 A B 0.106 0.018	30 A B 0.124 0.021	A B 0.142 0.024	A B 0.159 0.026
150 x 525	43 A 43	throw m	3.1 1.2 3.7 1.5 5.2 2.1 0.026 0.03	3.7 1.5 4.3 1.8 6.1 2.4	4.3 1.8 4.9 2.1 7.0 2.7 0.044 0.059	4.6 1.8 5.2 2.1 7.6 3.1 0.053 0.071	4.9 2.1 5.5 2.4 7.9 3.4 0.062 0.083	5.2 2.1 6.1 2.4 8.5 3.4 0.071 0.094	5.5 2.4 6.4 2.7 9.2 3.7 0.080 0.106
	B 45 *	throw m m ³ /s side	2.4 2.4 3.1 3.1 4.0 4.3 0.058 0.00		3.1 3.1 4.0 4.0 5.2 5.5 0.096 0.015	3.4 3.4 4.3 4.3 5.5 6.1 0.115 0.018	3.7 3.7 4.6 4.6 6.1 6.4 0.134 0.021	4.0 4.0 4.9 4.9 6.4 7.0 0.153 0.024	4.3 4.3 5.2 5.2 7.0 7.3 0.172 0.026
	31	m³/s side	3.1 1.2 3.7 1.5 5.2 2.1 0.088 0.01 3.4 1.8	3.7 1.5 4.3 1.8 6.1 2.4 8 0.118 0.024 4.0 2.1	4.3 1.8 4.9 2.1 7.0 2.7 0.148 0.029 4.6 2.4	4.6 1.8 5.2 2.1 7.6 3.1 0.177 0.035 4.9 2.7	4.9 2.1 5.5 2.4 7.9 3.4 0.207 0.041 5.2 2.7	5.2 2.1 6.1 2.4 8.5 3.4 0.236 0.047 5.5 3.1	5.5 2.4 6.4 2.7 9.2 3.7 0.266 0.053 6.1 3.4
	33 B	m³/s side	3.4 1.8 4.3 2.4 5.8 3.1 0.044 0.04 2.7 2.7	4.9 2.7 6.7 3.7	4.6 2.4 5.5 3.1 7.6 4.3 0.074 0.066 3.4 3.4	4.9 2.7 6.1 3.4 8.2 4.6 0.088 0.079 3.7 3.7	6.4 3.7 8.8 4.9 0.103 0.093 4.0 4.0	7.0 4.0 9.5 5.2 0.118 0.106 4.3 4.3	7.3 4.3 10.1 5.5 0.133 0.119 4.6 4.6
	37	m ³ /s side throw m	3.4 3.1 4.9 4.6 0.062 3.1	4.0 3.7 5.5 5.2 0.083 3.7	4.6 4.3 6.4 5.8 0.103 4.3	4.9 4.6 6.7 6.4 0.124 4.6	5.2 4.9 7.3 6.7 0.144 4.9	5.5 5.2 7.6 7.3 0.165 5.2	6.1 5.5 8.2 7.9 0.186 5.5
AD 0.079	A 22, 23	m³/s side throw m	3.7 5.2 0.106 0.01 3.7 1.8	4.3 6.1	4.9 7.0 0.177 0.029 4.9 2.4	5.2 7.6 0.212 0.035 5.2 2.7	5.5 7.9 0.248 0.041 5.5 2.7	6.1 8.5 0.283 0.047 6.1 3.1	6.4 9.2 0.319 0.053 6.4 3.4
m ²	52 54 55 53	m³/s side throw m	4.6 2.4 6.4 3.1 0.124 3.7	5.2 2.7 7.3 3.7 0.165 4.3	5.8 3.1 8.2 4.3 0.206 4.9	6.4 3.4 9.2 4.6 0.248 5.2	6.7 3.7 9.8 4.9 0.289 5.5	7.3 4.0 10.1 5.2 0.330 6.1	7.9 4.3 11.0 5.5 0.372 6.4
	12, 13	Total m³/s	4.6 6.4 0.142	5.2 7.3 0.189	5.8 8.2 0.236	6.4 9.2 0.283	6.7 9.8 0.330	7.3 10.4 0.378	7.9 11.0 0.425
	Return NC+5 Factors -SP=4.1TP	NC m³/s side	A B 0.062 0.00	14 A B	21 A B 0.103 0.015	27 A B 0.124 0.018	31 A B 0.144 0.021	35 A B 0.165 0.024	39 A B 0.186 0.026
150 x 600	43 A 43	throw m	3.1 1.2 3.7 1.5 5.2 2.1 0.035 0.03	3.7 1.5 4.3 1.8 6.1 2.4	4.3 1.8 4.9 2.1 7.0 2.7 0.059 0.059	4.6 1.8 5.2 2.1 7.6 3.1 0.071 0.071	4.9 2.1 5.5 2.4 7.9 3.4 0.083 0.083	5.2 2.1 6.1 2.4 8.5 3.4 0.094 0.094	5.5 2.4 6.4 2.7 9.2 3.7 0.106 0.106
	45 *	throw m m³/s side	2.4 2.4 3.1 3.1 4.3 4.3 0.067 0.00		3.1 3.1 4.0 4.0 5.5 5.5 0.111 0.015	3.4 3.4 4.3 4.3 6.1 6.1 0.133 0.018	3.7 3.7 4.6 4.6 6.4 6.4 0.155 0.021	4.0 4.0 4.9 4.9 7.0 7.0 0.177 0.024	4.3 4.3 5.2 5.2 7.3 7.3 0.199 0.026
	31	throw m m ³ /s side	3.1 1.2 3.7 1.5 5.2 2.1 0.106 0.01		4.3 1.8 4.9 2.1 7.0 2.7 0.178 0.029	4.6 1.8 5.2 2.1 7.6 3.1 0.213 0.035	4.9 2.1 5.5 2.4 7.9 3.4 0.248 0.041	5.2 2.1 6.1 2.4 8.5 3.4 0.283 0.047	5.5 2.4 6.4 2.7 9.2 3.7 0.319 0.053
	33 B	throw m m ³ /s side throw m	3.7 1.8 4.6 2.4 6.4 3.1 0.044 0.04 2.7 2.7	4.3 2.1 5.2 2.7 7.3 3.7 9 0.059 0.064 3.1 3.1	4.9 2.4 5.8 3.1 8.2 4.3 0.074 0.081 3.4 3.4	5.2 2.7 6.4 3.4 9.2 4.6 0.089 0.097 3.7 3.7	5.5 2.7 6.7 3.7 9.8 4.9 0.103 0.114 4.0 4.0	6.1 3.1 7.3 4.0 10.4 5.2 0.118 0.130 4.3 4.3	6.4 3.4 7.9 4.3 11.0 5.5 0.133 0.146 4.6 4.6
	A	m³/s side throw m	3.4 3.4 4.9 4.9 0.071 3.1	4.0 4.0 5.5 5.5 0.094 3.7	4.6 4.6 6.4 6.4 0.118 4.3	4.9 4.9 6.7 6.7 0.142 4.6	5.2 5.2 7.3 7.3 0.165 4.9	5.5 5.5 7.6 7.6 0.189 5.2	6.1 6.1 8.2 8.2 0.212 5.5
AD 0.090	A 22, 23	m³/s side throw m	3.7 5.2 0.123 0.01 3.7 1.8	4.3 6.1	4.9 7.0 0.207 0.029 4.9 2.4	5.2 7.6 0.248 0.035 5.2 2.7	5.5 7.9 0.289 0.041 5.5 2.7	6.1 8.5 0.330 0.047 6.1 3.1	6.4 9.2 0.372 0.053 6.4 3.4
m ²	52 54 54 53 54 53 54 55 55 55 55 55 55 55 55 55 55 55 55	m³/s side throw m	4.6 2.4 6.4 3.1 0.142 4.0	5.2 2.7 7.3 3.7 0.189 4.6	5.8 3.1 8.2 4.3 0.236 5.2	6.4 3.4 9.2 4.6 0.283 5.5	6.7 3.7 9.8 4.9 0.330 6.1	7.3 4.0 10.4 5.2 0.378 6.4	7.9 4.3 11.0 5.5 0.425 7.0
	12, 13		4.9 7.0	5.5 7.9	6.4 9.2	6.7 9.8	7.3 10.4	7.6 11.3	8.2 11.9

<sup>70 7.9 9.2 9.8 10.4 11.3

*</sup> These cores are constructed to give as near as possible equal air flow in A & B directions.

Performance Data - \square \square \square

	Neck Vel m/s TP Pa	1.57 6	2.10 11	2.62 18	3.15 25	3.67 35	4.19 45	4.72 57
Return NC+5	Total m ³ /s	0.106	0.142 13	0.177 20	0.212 26	0.248 30	0.283 34	0.319 38
Factors -SP=4.1TP	m³/s side throw m	A B 0.033 0.020 2.1 1.5 2.7 1.8 3.7 2.7	A B 0.044 0.026 2.4 1.8 3.1 2.1 4.3 3.1	A B 0.055 0.033 2.7 2.1 3.4 2.4 4.9 3.4	A B 0.067 0.040 3.1 2.1 3.7 2.7 5.2 3.7	A B 0.077 0.046 3.4 2.4 4 2.7 5.5 4	A B 0.089 0.053 3.4 2.4 4.3 3.1 6.1 4.3	A B 0.100 0.060 3.7 2.7 4.6 3.4 6.4 4.6
A 31	m³/s side throw m	0.043 0.020 2.7 1.5 3.4 1.8 4.9 2.7	0.057 26.000 3.1 1.8 4.0 2.1 5.5 3.1	0.072 0.033 3.4 2.1 4.6 2.4 6.4 3.4	0.086 0.040 3.7 2.1 4.9 2.7 6.7 3.7	0.101 0.046 4.0 2.4 5.2 2.7 7.3 4.0	0.115 0.053 4.3 2.4 5.5 3.1 7.6 4.3	0.129 0.060 4.6 2.7 6.1 3.4 8.2 4.6 0.106 0.106
A B 33	throw m m³/s side	2.4 2.4 3.1 3.1 4.0 4.0 0.033 0.036	2.7 2.7 3.4 3.4 4.6 4.6 0.044 0.049	3.1 3.1 4.0 4.0 5.2 5.2 0.055 0.060	3.4 3.4 4.3 4.3 5.5 5.5 0.067 0.073	3.7 3.7 4.6 4.6 6.1 6.1 0.077 0.085	4.0 4.0 4.9 4.9 6.4 6.4 0.089 0.097	4.3 4.3 5.2 5.2 7.0 7.0 0.100 0.109 4.3 4.6
A 37	m³/s side throw m	3.1 3.1 4.3 4.6 0.053 3.1	3.4 3.7 4.9 5.2 0.071 3.7	4.0 4.3 5.5 5.8 0.089 4.3	4.3 4.6 6.1 6.4 0.106 4.6	4.6 4.9 6.4 6.7 0.124 4.9	4.9 5.2 7.0 7.3 0.142 5.2	5.2 5.5 7.3 7.9 0.159 5.5
A D	m³/s side throw m	3.7 5.2 0.067 0.040 3.1 2.4 3.7 3.1	4.3 6.1 0.089 0.055 3.7 2.7 4.3 3.4	4.9 7.0 0.111 0.067 4.3 3.1 4.9 4.0	5.2 7.6 0.133 0.080 4.6 3.4 5.2 4.3	5.5 7.9 0.155 0.093 4.9 3.7 5.5 4.6	6.1 8.5 0.177 0.106 5.2 4.0 6.1 4.9	6.4 9.2 0.199 0.119 5.5 4.3 6.4 5.2
55 A 53 12, 13	m³/s side throw m	5.2 4.0 0.106 3.7 4.6 6.4	6.1 4.6 0.142 4.3 5.2	7.0 5.2 0.177 4.9 5.8	7.6 5.5 0.212 5.2 6.4	7.9 6.1 0.243 5.5 6.7	8.5 6.4 0.283 6.1 7.3	9.2 7.0 0.319 6.4 7.9 11.0
Return NC+4 Factors -SP=1.8TP	Total m³/s NC	0.133 - A B	0.177 14 A B	0.222 21 A B	0.266 27 A B	0.310 31 A B	0.354 35 A B	0.400 39 A B 0.140 0.060
42	throw m m³/s side	2.7 1.5 3.4 1.8 4.9 2.7 0.033 0.033	3.1 1.8 4.0 2.1 5.5 3.1 0.044 0.044	3.4 2.1 4.6 2.4 6.4 3.4 0.055 0.055	3.7 2.1 4.9 2.7 6.7 3.7 0.067 0.067	4.0 2.4 5.2 2.7 7.3 4.0 0.077 0.077	4.3 2.4 5.5 3.1 7.6 4.3 0.089 0.089	4.6 2.7 6.1 3.4 8.2 4.6 0.100 0.100
45 *	m³/s side throw m	3.1 3.1 4.3 4.3 0.057 0.020 3.1 1.5	3.4 3.4 4.9 4.9 0.075 0.026 3.7 1.8	4.0 4.0 5.5 5.5 0.094 0.033 4.3 2.1	4.3 4.3 6.1 6.1 0.113 0.040 4.6 2.1	4.6 4.6 6.4 6.4 0.132 0.046 4.9 2.4	4.9 4.9 7.0 7.0 0.151 0.053 5.2 2.4	4.3 4.3 5.2 5.2 7.3 7.3 0.169 0.060 5.5 2.7
B A	m³/s side throw m	3.7 1.8 5.2 2.7 0.039 0.055 2.7 2.1 3.1 2.7	4.3 2.1 6.1 3.1 0.052 0.073 3.1 2.4 3.7 3.1	4.9 2.4 7.0 3.4 0.065 0.093 3.4 2.7 4.3 3.4	5.2 2.7 7.6 3.7 0.078 0.110 3.7 3.1 4.6 3.7	5.5 2.7 7.9 4.0 0.091 0.128 4.0 3.4 4.9 4.0	6.1 3.1 8.5 4.3 0.103 0.147 4.3 3.4 5.2 4.3	6.4 3.4 9.2 4.6 0.117 0.166 4.6 3.7 5.5 4.6
B 37	m³/s side throw m	4.6 3.7 0.046 0.043 2.7 2.7 3.4 3.4	5.2 4.3 0.061 0.058 3.1 3.1 4.0 4.0	5.8 4.9 0.076 0.072 3.4 3.4 4.6 4.6	6.4 5.2 0.092 0.086 3.7 3.7 4.9 4.9	6.7 5.5 0.107 0.100 4.0 4.0 5.2 5.2	7.3 6.1 0.123 0.115 4.3 4.3 5.5 5.5	7.9 6.4 0.138 0.129 4.6 4.6 6.1 6.1 8.2 8.2
^A 22, 23	m³/s side throw m	0.066 3.1 3.7 5.2	0.088 3.7 4.3 6.1	0.111 4.3 4.9 7.0	0.133 4.6 5.2 7.6	0.155 4.9 5.5 7.9	0.177 5.2 6.1 8.5	0.199 5.5 6.4 9.2
52 55 55 55 54 53	m ³ /s side throw m m ³ /s side	3.4 2.4 4.3 3.1 5.8 4.0 0.133	4.0 2.7 4.9 3.4 6.7 4.6 0.177	4.6 3.1 5.5 4.0 7.6 5.2 0.222	4.9 3.4 6.1 4.3 8.2 5.5 0.266	5.2 3.7 6.4 4.6 8.8 6.1 0.310	5.5 4.0 7.0 4.9 9.5 6.4 0.354	0.279 0.119 6.1 4.3 7.3 5.2 10.1 7.0 0.400
12, 13 Return NC+4	throw m Total m³/s	4.0 4.9 7.0 0.159	4.6 5.5 7.9 0.212 15	5.2 6.4 9.2 0.265 22	5.5 6.7 9.8 0.319 28	6.1 7.3 10.4 0.372 32	6.4 7.6 11.3 0.425 36	7.0 8.2 11.9 0.478 40
Factors -SP=2.2 TP	m³/s side throw m	A B 0.060 0.020 3.1 1.5	A B 0.080 0.026 3.7 1.8	A B 0.100 0.033 4.3 2.1	A B 0.120 0.040 4.6 2.1	A B 0.140 0.046 4.9 2.4	A B 0.160 0.053 5.2 2.4	A B 0.179 0.060 5.5 2.7 6.4 3.4
B 42 45 *	m³/s side throw m	5.2 2.7 0.033 0.049 2.4 2.7 3.1 3.4	6.1 3.1 0.044 0.062 2.7 3.1 3.4 4.0	7.0 3.4 0.055 0.077 3.1 3.4 4.0 4.6	7.6 3.7 0.067 0.093 3.4 3.7 4.3 4.9	7.9 4.0 0.077 0.109 3.7 4.0 4.6 5.2	8.5 4.3 0.089 0.124 4.0 4.3 4.9 5.5	9.2 4.6 0.100 0.140 4.3 4.6 5.2 6.1
31	m³/s side throw m	0.069 0.020 3.1 1.5 3.7 1.8 5.2 2.7	0.093 0.026 3.7 1.8 4.3 2.1 6.1 3.1	0.116 0.033 4.3 2.1 4.9 2.4 7.0 3.4	0.139 0.040 4.6 2.1 5.2 2.7 7.6 3.7	0.163 0.046 4.9 2.4 5.5 2.7 7.9 4.0	0.186 0.053 5.2 2.4 6.1 3.1 8.5 4.3	7.3 8.2 0.209 0.060 5.5 2.7 6.4 3.4 9.2 4.6
33	m³/s side throw m m³/s side	0.079 0.040 2.4 2.4 3.1 3.1 4.3 4.0 0.046 0.056	0.106 0.053 2.7 2.7 3.4 3.4 4.9 4.6 0.061 0.075	0.133 0.067 3.1 3.1 4.0 4.0 5.5 5.2 0.077 0.094	0.159 0.080 3.4 3.4 4.3 4.3 6.1 5.5 0.092 0.113	0.186 0.093 3.7 3.7 4.6 4.6 6.4 6.1 0.107 0.131	0.212 0.106 4.0 4.0 4.9 4.9 7.0 6.4 0.123 0.150	0.239 0.119 4.3 4.3 5.2 5.2 7.3 7.0 0.138 0.169
▼ .	throw m m³/s side	2.7 3.1 3.4 3.7 4.9 5.2 0.077	3.1 3.7 4.0 4.3 5.5 6.1 0.106	3.4 4.3 4.6 4.9 6.4 7.0 0.133	3.7 4.6 4.9 5.2 6.7 7.6 0.159	4.0 4.9 5.2 5.5 7.3 7.9 0.186	4.3 5.2 5.5 6.1 7.6 8.5 0.212	4.6 5.5 6.1 6.4 8.2 9.2 0.239 6.1
	m³/s side throw m	4.3 5.8 0.119 0.040 3.7 2.4	4.9 6.7 0.160 0.053 4.3 2.7	5.5 7.6 0.199 0.067 4.9 3.1	6.1 8.2 0.239 0.080 5.2 3.4	6.4 8.8 0.279 0.093 5.5 3.7	7.0 9.5 0.319 0.106 6.1 4.0	7.3 10.1 0.358 0.119 6.4 4.3
55 53	m³/s side throw m	6.4 4.0 0.159 4.0 4.9	7.3 4.6 0.212 4.6 5.5	8.2 5.2 0.265 5.2 6.4	9.2 5.5 0.319 5.5 6.7	9.8 6.1 0.372 6.1 7.3	10.4 6.4 0.425 6.4 7.6	7.9 5.2 11.0 7.0 0.478 7.0 8.2 11.9
	Factors -SP=4.1 TP AA A B A B A A B A A B A A	Factors -SP=4.1 TP A	Section Sect	Section Sep=4.1TP	Fectors SP=4.1TP	Section Size A TP	Section SPP-4_11P	Section SP-4.11P

 $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions.

CMP – Performance Data

Size	Patterns	Neck Vel m/s	1.57	2.10	2.62	3.15	3.67	4.19 4.72	
in mm	Return NC+5	TP Pa Total m³/s	6 0.186	11 0.247	18 0.309	25 0.371	35 0.433	45 57 0.496 0.55	7
	Factors -SP=2.6 TP	NC	- А В	15 A B	22 A B	28 A B	32 A B	36 40 A B A	В
225 x 525	42 43 A 43	m³/s side throw m	0.073 0.020 3.4 1.5 4.3 1.8 5.8 2.7	0.097 0.026 4 1.8 4.9 2.1 6.7 3.1	0.122 0.033 4.6 2.1 5.5 2.4 7.6 3.4	0.146 0.040 4.9 2.1 6.1 2.7 8.2 3.7	0.170 0.046 5.2 2.4 6.4 2.7 8.8 4	0.195 0.053 0.219 5.5 2.4 6.1 7.0 3.1 7.3 9.5 4.3 10.1	0.060 2.7 3.4 4.6
	■ B A 45 *	m³/s side throw m	0.046 0.046 2.7 2.7 3.4 3.4 4.9 4.9	0.062 0.062 3.1 3.1 4.0 4.0 5.5 5.5	0.077 0.077 3.4 3.4 4.6 4.6 6.4 6.4	0.093 0.093 3.7 3.7 4.9 4.9 6.7 6.7	0.108	0.123	0.139 4.6 6.1 8.2
	A 31	m³/s side throw m	0.083 0.020 3.4 1.5 4.3 1.8 5.8 2.7	0.111 0.026 4.0 1.8 4.9 2.1 6.7 3.1	0.138 0.033 4.6 2.1 5.5 2.4 7.6 3.4	0.166 0.040 4.9 2.1 6.1 2.7 8.2 3.7	0.194 0.046 5.2 2.4 6.4 2.7 8.8 4.0	0.221 0.053 0.249 5.5 2.4 6.1 7.0 3.1 7.3 8.5 4.3 10.1	0.060 2.7 3.4 4.6
	A 33	m³/s side throw m	0.106 0.040 3.7 2.4 4.6 3.1 6.4 4.0	0.142 0.053 4.3 2.7 5.2 3.4 7.3 4.6	0.177 0.067 4.9 3.1 5.8 4.0 8.2 5.2	0.212 0.080 5.2 3.4 6.4 4.3 9.2 5.5	0.247 0.093 5.5 3.7 6.7 4.6 9.8 6.1	0.282 0.106 0.318 6.1 4.0 6.4 7.3 4.9 7.9 10.4 6.4 11.0	0.119 4.3 5.2 7.0
	B 37	m³/s side throw m	0.060 0.063 3.1 3.1 3.7 3.7 5.2 5.2	0.080 0.083 3.7 3.7 4.3 4.3 6.1 6.1	0.100 0.105 4.3 4.3 4.9 4.9 7.0 7.0	0.119 0.126 4.6 4.6 5.2 5.2 7.6 7.6	0.139 0.147 4.9 4.9 5.5 5.5 7.9 7.9	0.159 0.168 0.179 5.2 5.2 5.5 6.1 6.1 6.4 8.5 8.5 9.2	0.188 5.5 6.4 9.2
	^A 22, 23	m³/s side throw m	0.093 3.4 4.3 5.8	0.124 4.0 4.9 6.7	0.154 4.6 5.5 7.6	0.186 4.9 6.1 8.2	0.216 5.2 6.4 8.8	0.248 0.279 5.5 6.1 7.0 7.3 9.5 10.1	
AD 0.118 m ²	52 55 55 55 54	m³/s side throw m	0.145 0.040 4.0 2.4 4.9 3.1 7.0 4.0	0.195 0.053 4.6 2.7 5.5 3.4 7.9 4.6	0.243 0.067 5.2 3.1 6.4 4.0 9.2 5.2	0.291 0.080 5.5 3.4 6.7 4.3 9.8 5.5	0.340 0.093 6.1 3.7 7.3 4.6 10.4 6.1	0.389	0.119 4.3 5.2 7.0
	12, 13	m³/s side throw m	0.186 4.3 5.2 7.3	0.247 4.9 6.1 8.5	0.309 5.5 7.0 9.8	0.371 6.1 7.6 10.4	0.433 6.4 7.9 11.3	0.496 0.557 7.0 7.3 8.5 9.2 12.2 12.8	
	Return NC+5 Factors -SP=3.0 TP	Total m³/s NC m³/s side	0.212 - A B 0.086 0.020	0.283 16 A B 0.115 0.026	0.354 23 A B 0.144 0.033	0.425 29 A B 0.173 0.040	0.496 33 A B 0.202 0.046	0.566 0.637 37 41 A B 0.230 0.053 0.259	B 0.060
225 x 600	A 43	throw m	3.4 1.5 4.3 1.8 5.8 2.7 0.047 0.060	4.0 1.8 4.9 2.1 6.7 3.1 0.062 0.080	4.6 2.1 5.5 2.4 7.6 3.4 0.077 0.100	4.9 2.1 6.1 2.7 8.2 3.7 0.093 0.119	5.2 2.4 6.4 2.7 8.8 4.0 0.109 0.139	5.5 2.4 6.1 7.0 3.1 7.3 9.5 4.3 10.1 0.124 0.159 0.140	2.7 3.4 4.6
	45 *	throw m m ³ /s side	2.7 3.1 3.4 3.7 4.9 5.2 0.096 0.020	3.1 3.7 4.0 4.3 5.5 6.1 0.128 0.026	3.4 4.3 4.6 4.9 6.4 7.0 0.161 0.033	3.7 4.6 4.9 5.2 6.7 7.6 0.193 0.040	4.0 4.9 5.2 5.5 7.3 7.9 0.225 0.046	4.3 5.2 4.6 5.5 6.1 6.1 7.6 8.5 8.2 0.257 0.053 0.286	5.5 6.4 9.2 0.060
	31	throw m m ³ /s side	3.4 1.5 4.3 1.8 5.8 2.7 0.133 0.040	4.0 1.8 4.9 2.1 6.7 3.1 0.178 0.053	4.6 2.1 5.5 2.4 7.6 3.4 0.221 0.067	4.9 2.1 6.1 2.7 8.2 3.7 0.265 0.080	5.2 2.4 6.4 2.7 8.8 4.0 0.310 0.093	5.5 2.4 6.1 7.0 3.1 7.3 9.5 4.3 10.1 0.354 0.106 0.398	2.7 3.4 4.6 0.119
	33	throw m m ³ /s side	4.0 2.4 4.9 3.1 7.0 4.0 0.073 0.069	4.6 2.7 5.5 3.4 7.9 4.6 0.097 0.093	5.2 3.1 6.4 4.0 9.2 5.2 0.122 0.116	5.5 3.4 6.7 4.3 9.8 5.5 0.146 0.139	6.1 3.7 7.3 4.6 10.4 6.1 0.170 0.162	6.4 4.0 7.0 7.6 4.9 8.2 11.3 6.4 11.9 0.195 0.186 0.220	4.3 5.2 7.0 0.209
	37	throw m m ³ /s side	3.1 3.1 3.7 3.7 5.2 5.2 0.106	3.7 3.7 4.3 4.3 6.1 6.1 0.142	4.3 4.3 4.9 4.9 7.0 7.0 0.177	4.6 4.6 5.2 5.2 7.6 7.6 0.212	4.9 4.9 5.5 5.5 7.9 7.9 0.248	5.2 5.2 5.5 6.1 6.1 6.4 8.5 8.5 9.2 0.283 0.319	5.5 6.4 9.2
AD	^A 22,23	throw m m³/s side	3.7 4.6 6.4 0.172 0.040	4.3 5.2 7.3 0.230 0.053	4.9 5.8 8.2 0.288 0.067	5.2 6.4 9.2 0.345 0.080	5.5 6.7 9.8 0.403 0.093	6.1 6.4 7.3 7.9 10.4 11.0 0.460 0.106 0.518	0.119
0.135 m ²	52 55 55 55 55	throw m m ³ /s side	4.3 2.4 5.2 3.1 7.3 4.0 0.212	4.9 2.7 6.1 3.4 8.5 4.6 0.283	5.5 3.1 7.0 4.0 9.8 5.2 0.354	6.1 3.4 7.6 4.3 10.4 5.5 0.425	6.4 3.7 7.9 4.6 11.3 6.1 0.406	7.0 4.0 7.3 8.5 4.9 9.2 12.2 6.4 12.8 0.566 0.637	4.3 5.2 7.0
	Return NC+3	throw m Total m³/s	4.3 5.2 7.3 0.177	4.9 6.1 8.5 0.236	5.5 7.0 9.8 0.295	6.1 7.6 10.4 0.354	6.4 7.9 11.3 0.413	7.0 7.3 8.5 9.2 12.2 12.8 0.472 0.531	
	Factors -SP=1.7 TP	NC m³/s side	A B 0.053 0.035	16 A B 0.071 0.047	A B 0.088 0.059	29 A B 0.106 0.071	A B 0.124 0.083	37 41 A B A 0.142 0.094 0.159	B 0.106
300 x 375	B 42	throw m m³/s side	2.4 1.8 3.4 2.4 4.3 3.1 0.071 0.035	2.7 2.1 3.4 2.7 4.9 3.7 0.094 0.047	3.1 2.4 4.0 3.1 5.5 4.3 0.118 0.059	3.4 2.7 4.3 3.4 6.1 4.6 0.142 0.071	3.7 2.7 4.6 3.7 6.4 4.9 0.165 0.083	4.0 3.1 4.3 4.9 4.0 5.2 7.0 5.2 7.3 0.189 0.094 0.212	3.4 4.3 5.5 0.106
	A 31	throw m m ³ /s side	3.1 1.8 3.7 2.4 5.2 3.1 0.061 0.055	3.7 2.1 4.3 2.7 6.1 3.7 0.081 0.074	4.3 2.4 4.9 3.1 7.0 4.3 0.102 0.092	4.6 2.7 5.2 3.4 7.6 4.6 0.122 0.111	4.9 2.7 5.5 3.7 7.9 4.9 0.142 0.129	5.2 3.1 5.5 6.1 4.0 6.4 8.5 5.2 9.2 0.162 0.147 0.183	3.4 4.3 5.5 0.166
	A B 33	throw m m ³ /s side	2.7 2.1 3.1 2.7 4.6 3.7 0.053 0.062	3.1 2.4 3.7 3.1 5.2 4.3 0.071 0.083	3.4 2.7 4.3 3.4 5.8 4.9 0.088 0.103	3.7 3.1 4.6 3.7 6.4 5.2 0.106 0.124	4.0 3.4 4.9 4.0 6.7 5.5 0.124 0.144	4.3 3.4 4.6 5.2 4.3 5.5 7.3 6.1 7.9 0.142 0.165 0.159	3.7 4.6 6.4 0.186
	В 37	throw m m³/s side	3.1 3.1 3.7 3.7 5.2 5.2 0.088	3.7 3.7 4.3 4.3 6.1 6.1 0.118	4.3 4.3 4.9 4.9 7.0 7.0 0.147	4.6 4.6 5.2 5.2 7.6 7.6 0.177	4.9 4.9 5.5 5.5 7.9 7.9 0.207	5.2 5.2 5.5 6.1 6.1 6.4 8.5 8.5 9.2 0.236 0.266	5.5 6.4 9.2
AD	A 22,23	throw m m³/s side	3.4 4.3 5.8 0.106 0.071	4.0 4.9 6.7 0.142 0.094	4.6 5.5 7.6 0.177 0.118	4.9 6.1 8.2 0.212 0.142	5.2 6.4 8.8 0.248 0.165	5.5 6.1 7.0 7.3 9.5 10.1 0.283 0.189 0.319	0.212
0.112 m²	52 55 54 53	throw m m³/s side	3.7 2.7 4.6 3.4 6.4 4.9 0.177	4.3 3.1 5.2 4.0 7.3 5.5 0.236	4.9 3.4 5.8 4.6 8.2 6.4 0.295	5.2 3.7 6.4 4.9 9.2 6.7 0.354	5.5 4.0 6.7 5.2 9.8 7.3 0.413	6.1 4.3 6.4 7.3 5.5 7.9 10.4 7.6 11.0 0.472 0.531	4.6 6.1 8.2
	12, 13	throw m	4.3 5.2 7.3	4.9 6.1 8.5	5.5 7.0 9.8	6.1 7.6 10.4	6.4 7.9 11.3	7.0 7.3 8.5 9.2 12.2 12.8	

 $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions.

Performance Data – CMP

Size	Patterns	Neck Vel m/s	1.57	2.10	2.62	3.15	3.67	4.19	4.72
in mm	Return NC+4	TP Pa Total m³/s NC	6 0.212	11 0.283	18 0.354	25 0.425	35 0.496	45 0.566	57 0.637
	Factors -SP=2.0 TP		A B 0.071 0.035	17 A B 0.094 0.047	A B 0.118 0.059	A B 0.142 0.071	34 A B 0.165 0.083	38 A B 0.189 0.094	42 A B 0.212 0.106
300 x 450	43 A 43 A 43	m³/s side throw m	3.1 1.8 3.7 2.4 5.2 3.1	3.7 2.1 4.3 2.7 6.1 3.7	4.3 2.4 4.9 3.1 7 4.3	0.142 0.071 4.6 2.7 5.2 3.4 7.6 4.6	0.165 0.083 4.9 2.7 5.5 3.7 7.9 4.9	5.2 3.1 6.1 4 8.5 5.2	5.5 3.4 6.4 4.3 9.2 5.5
	B A 45 *	m³/s side throw m	0.053 0.053 3.1 3.1 3.7 3.7 5.2 5.2	0.071 0.071 3.7 3.7 4.3 4.3 6.1 6.1	0.088 0.088 4.3 4.3 4.9 4.9 7.2 7.2	0.106 0.106 4.6 4.6 5.2 5.2 7.6 7.6	0.124 0.124 4.9 4.9 5.5 5.5 7.9 7.9	0.142 0.142 5.2 5.2 6.1 6.1 8.5 8.5	0.159 0.159 5.5 5.5 6.4 6.4 9.2 9.2
	31	m³/s side throw m	0.088 0.035 3.4 1.8 4.3 2.4	0.118 0.047 4.0 2.1 4.9 2.7	0.147 0.059 4.6 2.4 5.5 3.1	0.177 0.071 4.9 2.7 6.1 3.4	0.206 0.083 5.2 2.7 6.4 3.7	0.236 0.094 5.5 3.1 7.0 4.0	0.265 0.106 6.1 3.4 7.3 4.3
	33	m³/s side throw m	0.067 0.079 2.7 2.4 3.4 3.1	6.7 3.7 0.088 0.106 3.1 2.7 4.0 3.4	0.111 0.133 3.4 3.1 4.6 4.0	8.2 4.6 0.133 0.159 3.7 3.4 4.9 4.3	8.8 4.9 0.155 0.186 4.0 3.7 5.2 4.6	9.5 5.2 0.177 0.212 4.3 4.4 5.5 4.9	0.199 0.239 4.6 4.3 6.1 5.2
	B 37	m³/s side throw m	4.9 4.3 0.071 0.071 3.1 3.1 3.7 3.7	5.5 4.9 0.094 0.094 3.7 3.7 4.3 4.3	6.4 5.5 0.118 0.118 4.3 4.3 4.9 4.9	6.7 6.1 0.142 0.142 4.6 4.6 5.2 5.2	7.3 6.4 0.165 0.165 4.9 4.9 5.5 5.5	7.6 7.0 0.189 0.189 5.2 5.2 6.1 6.1	8.2 7.3 0.212 0.212 5.5 5.5 6.4 6.4
	^ 22, 23	m³/s side throw m	5.2 5.2 0.106 3.7 4.6	6.1 6.1 0.142 4.3 5.2	7.0 7.0 0.177 4.9 5.8	7.6 7.6 0.212 5.2 6.4	7.9 7.9 0.248 5.5 6.7	8.5 8.5 0.283 6.1 7.3	9.2 9.2 0.319 6.4 7.9
AD 0.135	52 55 54 54 53	m³/s side throw m	6.4 0.142 0.071 3.1 2.7 4.9 3.4	7.3 0.189 0.094 4.6 3.1 5.5 4.0	8.2 0.236 0.118 5.2 3.4 6.4 4.6	9.2 0.283 0.142 5.5 3.7 6.7 4.9	9.8 0.330 0.165 6.1 4.0 7.3 5.2	10.4 0.378 0.189 6.4 4.3 7.6 5.5	11.0 0.425 0.212 7.0 4.6 8.2 6.1
m²		m³/s side throw m	7.0 4.9 0.212 4.3	7.9 5.5 0.283 4.9	9.2 6.4 0.354 5.5	9.8 6.7 0.425 6.1	10.4 7.3 0.496 6.4	11.3 7.6 0.566 7.0	11.9 8.2 0.637 7.3
	Return NC+6	Total m³/s NC	5.2 7.3 0.248	6.1 8.5 0.330 17	7.0 9.8 0.413 24	7.6 10.4 0.496 30	7.9 11.3 0.578 34	8.5 12.2 0.661 38	9.2 12.8 0.743 42
300	Factors -SP=2.3 TP	m³/s side throw m	A B 0.088 0.035 3.4 1.8 4.3 2.4	A B 0.118 0.047 4.0 2.1 4.9 2.7	A B 0.147 0.059 4.6 2.4 5.5 3.1	A B 0.177 0.071 4.9 2.7 6.1 3.4	A B 0.206 0.083 5.2 2.7 6.4 3.7	A B 0.236 0.094 5.5 3.1 7.0 4.0	A B 0.265 0.106 6.1 3.4 7.3 4.3
x 525	43 43 43	m³/s side throw m	5.8 3.1 0.053 0.071 3.1 3.1	6.7 3.7 0.071 0.094 3.7 3.7	7.6 4.3 0.088 0.118 4.3 4.3	8.2 4.6 0.106 0.142 4.6 4.6	8.8 4.9 0.124 0.165 4.9 4.9	9.5 5.2 0.142 0.189 5.2 5.2	10.1 5.5 0.159 0.212 5.5 5.5
	45 *	m³/s side throw m	3.7 3.7 5.2 5.2 0.106 0.035 3.7 1.8	4.3 4.3 6.1 6.1 0.142 0.047 4.3 2.1	4.9 4.9 7.0 7.0 0.177 0.059 4.9 2.4	5.2 5.2 7.6 7.6 0.212 0.071 5.2 2.7	5.5 5.5 7.9 7.9 0.248 0.083 5.5 2.7	6.1 6.1 8.5 8.5 0.283 0.094 6.1 3.1	6.4 6.4 9.2 9.2 0.319 0.106 6.4 3.4
	B 31	m³/s side throw m	4.6 2.4 6.4 3.1 0.070 0.109 2.7 2.7	5.2 2.7 7.3 3.7 0.093 0.144 3.1 3.1	5.8 3.1 8.2 4.3 0.116 0.180 3.4 3.4	6.4 3.4 9.2 4.6 0.139 0.217 3.7 3.7	6.7 3.7 9.8 4.9 0.163 0.253 4.0 4.0	7.3 4.0 10.4 5.3 0.186 0.289 4.3 4.3	7.9 4.3 11.0 5.5 0.209 0.325 4.6 4.6
	33 A B	m³/s side	3.4 3.4 4.9 4.9 0.088 0.079 3.4 3.4	4.0 4.0 5.5 5.5 0.118 0.106 4.0 4.0	4.6 4.6 6.4 6.4 0.148 0.133 4.6 4.6	4.9 4.9 6.7 6.7 0.177 0.159 4.9 4.9	5.2 5.2 7.3 7.3 0.206 0.186 5.2 5.2	5.5 5.5 7.6 7.6 0.236 0.212 5.5 5.5	6.1 6.1 82.0 8.2 0.265 0.239 6.1 6.1
	37	throw m m³/s side	4.3 4.3 5.8 5.8 0.124	4.9 4.9 6.Y 6.7 0.165	5.5 5.5 7.6 7.6 0.206	6.1 6.1 8.2 8.2 0.248	6.4 6.4 8.8 8.8 0.289	7.0 7.0 9.5 9.5 0.330	7.3 7.3 10.1 10.1 0.372
AD	^A 22, 23	throw m m³/s side	3.7 4.6 6.4 0.177 0.071	4.3 5.2 7.3 0.236 0.094	4.9 5.8 8.2 0.295 0.118	5.2 6.4 9.2 0.354 0.142	5.5 6.7 9.8 0.413 0.165	6.1 7.3 10.4 0.472 0.189	6.4 7.9 11.0 0.531 0.212
AD 0.157 m ²	52 55 54 55 55 54	m³/s side throw m m³/s side	4.3 2.7 5.2 3.4 7.3 4.9 0.248	4.9 3.1 6.1 4.0 8.5 5.5 0.330	5.5 3.4 7.0 4.6 9.8 6.4 0.413	6.1 3.7 7.6 4.9 10.4 6.7 0.496	6.4 4.0 7.9 5.2 11.3 7.3 0.578	7.0 4.3 8.5 5.5 12.2 7.6 0.661	7.3 4.6 9.2 6.1 12.8 8.2 0.743
	12, 13	throw m	4.6 5.5 7.9	5.2 6.4 9.2	5.8 7.3 10.4	6.4 7.9 11.3	6.7 8.5 12.2	7.3 9.2 12.8	7.9 9.8 13.7
	Return NC+6 Factors -SP=2.7 TP	Total m³/s NC	0.283 9 A B	0.378 18 A B	0.472 25 A B	0.566 31 A B	0.661 35 A B	0.755 39 A B	0.850 43 A B
300 X 600	42 43 A 43	m³/s side throw m	0.106 0.035 3.7 1.8 4.6 2.4 6.4 3.1	0.142 0.047 4.3 2.1 5.2 2.7 7.3 3.7	0.177 0.059 4.9 2.4 5.8 3.1 8.2 4.3	0.212 0.071 5.2 2.7 6.4 3.4 9.2 4.6	0.248 0.083 5.5 2.7 6.7 3.7 9.8 4.9	0.283 0.094 6.1 3.1 7.3 4.0 10.4 5.2	0.319 0.106 6.4 3.4 7.9 4.3 11.0 5.5
	■ B A 45 *	m³/s side throw m	0.071 0.071 3.1 3.1 3.7 3.7 5.2 5.2	0.094 0.094 3.7 3.7 4.3 4.3 6.1 6.1	0.118 0.118 4.3 4.3 4.9 4.9 7.0 7.0	0.142 0.142 4.6 4.6 5.2 5.2 7.6 7.6	0.165 0.165 4.9 4.9 5.5 5.5 7.9 7.9	0.189 0.189 5.2 5.2 6.1 6.1 8.5 8.5	0.212 0.212 5.5 5.5 6.4 6.4 9.2 9.2
	A 31	m³/s side throw m	0.124 0.035 3.7 1.8 4.6 2.4 6.4 3.1	0.165 0.047 4.3 2.1 5.2 2.7 7.3 3.7	0.206 0.083 4.9 2.4 5.8 3.1 8.2 4.3	0.248 0.071 5.2 2.7 6.4 3.4 9.2 4.6	0.289 0.083 5.5 2.7 6.7 3.7 9.8 4.9	0.330 0.094 6.1 3.1 7.3 4.0 10.4 5.2	0.372 0.106 6.4 3.4 7.9 4.3 11.0 5.5
	33	m³/s side throw m	0.142 0.071 3.1 2.7 3.7 3.4 5.2 4.9	0.189 0.094 3.7 3.1 4.3 4.0 6.1 5.5	0.236 0.118 4.3 3.4 4.9 4.6 7.0 6.4	0.283 0.142 4.6 3.7 5.2 4.9 7.6 6.7	0.330 0.165 4.9 4.0 5.5 5.2 7.9 7.3	0.378 0.189 5.2 4.3 6.1 5.5 8.5 7.6	0.425 0.212 5.5 4.6 6.4 6.1 9.2 8.2
	B 37	m³/s side throw m	0.088 0.097 3.4 3.4 4.3 4.3 5.8 5.8	0.118 0.130 4.0 4.0 4.9 4.9 6.7 6.7	0.148 0.162 4.6 4.6 5.5 5.5 7.6 7.6	0.177 0.195 4.9 4.9 6.1 6.1 8.2 8.2	0.206 0.227 5.2 5.2 6.4 6.4 8.8 8.8	0.236 0.259 5.5 5.5 7.0 7.0 9.5 9.5	0.275 0.292 6.1 6.1 7.3 7.3 10.1 10.1
	^A 22, 23	m³/s side throw m	0.142 4.0 4.9 7.0	0.189 4.6 5.5 7.9	0.236 5.2 6.4	0.2 8.2 0.283 5.5 6.7 9.8	0.330 6.1 7.3 10.4	0.378 6.4 7.6	0.425 7.0 8.2
AD 0.180 m ²	52 55 54 54 53	m³/s side throw m	0.212 0.071 4.3 2.7 5.2 3.4	0.283 0.094 4.9 3.1 6.1 4.0	9.2 0.354 0.118 5.5 3.4 7.0 4.6	0.425 0.142 6.1 3.7 7.6 4.9	0.496 0.165 6.4 4.0 7.9 5.2	11.3 0.566 0.189 7.0 4.3 8.5 5.5	11.9 0.637 0.212 7.3 4.6 9.2 6.1
	12, 13	m³/s side throw m	7.3 4.9 0.283 4.9 6.1	8.5 5.5 0.378 5.8 7.0	9.8 6.4 0.472 6.7 7.9	10.4 6.7 0.566 7.0 8.5	11.3 7.3 0.661 7.6 9.2	12.2 7.6 0.775 8.2 10.1	12.8 8.2 0.850 8.8 10.7
			8.5	9.8	11.3	11.9	12.8	13.7	14.6

^{*} These cores are constructed to give as near as possible equal air flow in A & B directions.

CMP – Performance Data

Size	Patterns	Neck Vel m/s	1.57	2.10	2.62	3.15	3.67	4.19	4.72
in mm	Return NC+5	TP Pa Total m³/s	0.265 9	0.354 18	17 0.442 25	0.531 31	0.619 35	0.708 39	0.796 43
	Factors -SP=2.1 TP	NC m³/s side	A B 0.077 0.055	A B 0.103 0.074	A B 0.129 0.092	A B 0.155 0.111	A B 0.181 0.129	A B 0.207 0.147	A B 0.232 0.166
375 x 450	A 42 A 43	throw m	2.7 2.1 3.4 2.7	3.1 2.4 4 3.1	3.4 2.7 4.6 3.4	3.7 3.1 4.9 3.7	4 3.4 5.2 4	4.3 3.4 5.5 4.3	4.6 3.7 6.1 4.6
450	A	m³/s side throw m	4.9 3.7 0.105 0.055 3.7 2.1	5.5 4.3 0.140 0.074 4.3 2.4	6.4 4.9 0.175 0.092 4.9 2.7	6.7 5.2 0.210 0.111 5.2 3.1	7.3 5.5 0.245 0.129 5.5 3.4	7.6 6.1 0.280 0.147 6.1 3.4	8.2 6.4 0.315 0.166 6.4 3.7
	B 31		4.6 2.7 6.4 3.7 0.093 0.080	5.2 3.1 7.3 4.3 0.124 0.106	5.8 3.4 8.2 4.9 0.155 0.133	6.4 3.7 9.2 5.2 0.186 0.159	6.7 4.0 9.8 5.5 0.217 0.186	7.3 4.3 10.4 6.1 0.248 0.212	7.9 4.6 11.0 6.4 0.279 0.239
	A 33	m³/s side throw m	3.4 2.4 4.3 3.1	4.0 2.7 4.9 3.4	4.6 3.1 5.5 4.0	4.9 3.4 6.1 4.3	5.2 3.7 6.4 4.6	5.5 4.0 7.0 4.9	6.1 4.3 7.3 5.2
	BB	m³/s side throw m	5.8 4.3 0.077 0.094 3.4 3.4	6.7 4.9 0.103 0.126 4.0 4.0	7.6 5.5 0.129 0.157 4.6 4.6	8.2 6.1 0.154 0.188 4.9 4.9	8.8 6.4 0.180 0.220 5.2 5.2	9.5 7.0 0.206 0.251 5.5 5.5	10.1 7.3 0.232 0.282 6.1 6.1
	A 37		4.3 4.3 5.8 5.8	4.9 4.9 6.7 6.7	5.5 5.5 7.6 7.6	6.1 6.1 8.2 8.2	6.4 6.4 8.8 8.8	7.0 7.0 9.5 9.5	7.3 7.3 10.1 10.1
	A 22, 23	m³/s side throw m	0.133 4.0 4.9	0.177 4.6 5.5	0.221 5.2 6.4	0.265 5.5 6.7	0.310 6.1 7.3	0.354 6.4 7.6	0.398 7.0 8.2
AD 0.160	A	m³/s side	7.0 0.155 0.111 4.9 3.4	7.9 0.207 0.147 5.8 4.0	9.2 0.258 0.184 6.7 4.6	9.8 0.310 0.221 7.0 4.9	10.4 0.362 0.258 7.6 5.2	11.3 0.414 0.295 8.2 5.5	11.9 0.465 0.331 8.8 6.1
0.169 m²	52 55 A 53	throw m	6.1 4.3 8.5 5.8	7.0 4.9 9.8 6.7	7.9 5.5 11.3 7.6	8.5 6.1 11.9 8.2	9.2 6.4 12.8 8.8	10.1 7.0 13.7 9.5	10.7 7.3 14.6 10.1
	12, 13	m³/s side throw m	0.265 4.6 5.5	0.354 5.2 6.4	0.442 5.8 7.3	0.531 6.4 7.9	0.619 6.7 8.5	0.708 7.3 9.2	0.796 7.9 9.8
	Return NC+6	Total m³/s	7.9 0.309	9.2 0.413	10.4 0.515	11.3 0.619	12.2 0.723	12.8 0.826	13.7 0.930
	Factors -SP=2.2 TP	NC	9 A B	18 A B	25 A B	31 A B	35 A B	39 A B	43 A B
375 x	42	m³/s side throw m	0.099 0.055 3.7 2.1 4.6 2.7	0.133 0.074 4.3 2.4 5.2 3.1	0.166 0.092 4.9 2.7 5.8 3.4	0.199 0.111 5.2 3.1 6.4 3.7	0.233 0.129 5.5 3.4 6.7 4.0	0.266 0.147 6.1 3.4 7.3 4.3	0.299 0.166 6.4 3.7 7.9 4.6
525	B I B	m³/s side	6.4 3.7 0.077 0.077 3.4 3.4	7.3 4.3 0.103 0.103 4.0 4.0	8.2 4.9 0.129 0.129 4.6 4.6	9.2 5.2 0.154 0.154 4.9 4.9	9.8 5.5 0.180 0.180 5.2 5.2	10.4 6.1 0.206 0.206 5.5 5.5	11.0 6.4 0.232 0.232 6.1 6.1
	45 *	throw m	4.3 4.3 5.8 5.8	4.9 4.9 6.7 6.7	5.5 5.5 7.6 7.6	6.1 6.1 8.2 8.2	6.4 6.4 8.8 8.8	7.0 7.0 9.5 9.5	7.3 7.3 10.1 10.1
	31	m³/s side throw m	0.127 0.055 3.7 2.1 4.6 2.7	0.170 0.074 4.3 2.4 5.2 3.1	0.212 0.092 4.9 2.7 5.8 3.4	0.254 0.111 5.2 3.1 6.4 3.7	0.297 0.129 5.5 3.4 6.7 4.0	0.339 0.147 6.1 3.4 7.3 4.3	0.382 0.166 6.4 3.7 7.9 4.6
	B 31	m³/s side	6.4 3.7 0.101 0.109	7.3 4.3 0.134 0.144	8.2 4.9 0.168 0.180	9.2 5.2 0.201 0.217	9.8 5.5 0.235 0.253	10.4 6.1 0.269 0.289	11.0 6.4 0.303 0.325
	33 × 33	throw m	3.1 2.7 3.7 3.4 5.2 4.9	3.7 3.1 4.3 4.0 6.1 5.5	4.3 3.4 4.9 4.6 7.0 6.4	4.6 3.7 5.2 4.9 7.6 6.7	4.9 4.0 5.5 5.2 7.9 7.3	5.2 4.3 6.1 5.5 8.5 7.6	5.5 4.6 6.4 6.1 9.2 8.2
	B 37	m³/s side throw m	0.100 0.105 3.7 3.7 4.6 4.6	0.133 0.140 4.3 4.3 5.2 5.2	0.166 0.175 4.9 4.9 5.8 5.8	0.199 0.210 5.2 5.2 6.4 6.4	0.232 0.245 5.5 5.5 6.7 6.7	0.266 0.280 6.1 6.1 7.3 7.3	0.299 0.315 6.4 6.4 7.9 7.9
	A OI	m³/s side	6.4 6.4 0.154	7.3 7.3 0.206	8.2 8.2 0.258	9.2 9.2 0.310	9.8 9.8 0.362	10.4 10.4 0.413	11.0 11.0 0.465
	22, 23	throw m	4.0 4.9 7.0	4.6 5.5 7.9	5.2 6.4 9.2	5.5 6.7 9.8	6.1 7.3 10.4	6.4 7.6 11.3	7.0 8.2 11.9
AD 0.197 m ²	52 55 55 54 53	m³/s side throw m	0.199 0.111 4.3 3.4 5.2 4.3	0.266 0.147 4.9 4.0 6.1 4.9	0.331 0.184 5.5 4.6 7.0 5.5	0.398 0.221 6.1 4.9 7.6 6.1	0.465 0.258 6.4 5.2 7.9 6.4	0.532 0.295 7.0 5.5 8.5 7.0	0.599 0.331 7.3 6.1 9.2 7.3
		m³/s side	7.3 5.8 0.309	8.5 6.7 0.413	9.8 7.6 0.515	10.4 8.2 0.619	11.3 8.8 0.723	12.2 9.5 0.826	12.8 10.1 0.930
	12, 13	throw m	4.9 6.1 8.5	5.8 7.0 9.8	6.7 7.9 11.3	7.0 8.5 11.9	7.6 9.2 12.8	8.2 10.1 13.7	8.8 10.7 14.6
	Return NC+7	Total m³/s NC	0.354 10	0.472 19	0.590 26	0.708 32	0.826 36	0.944 40	1.060 44
075	Factors -SP=2.7 TP	m³/s side	A B 0.122 0.055	A B 0.162 0.074	A B 0.203 0.092	A B 0.244 0.111	A B 0.284 0.129	A B 0.325 0.147	A B 0.365 0.166
375 X 600	43 A2	throw m	3.7 2.1 4.6 2.7 6.4 3.7	4.3 2.4 5.2 3.1 7.3 4.3	4.9 2.7 5.8 3.4 8.2 4.9	5.2 3.1 6.4 3.7 9.2 5.2	5.5 3.4 6.9 4.0 9.8 5.5	6.1 3.4 7.3 4.3 10.4 6.1	6.4 3.7 7.9 4.6 11.0 6.4
	♣ B 45 *	m³/s side throw m	0.077 0.100 3.4 3.7 4.3 4.6	0.103 0.133 4.0 4.3 4.9 5.2	0.129 0.166 4.6 4.9 5.5 5.8	0.154 0.199 4.9 5.2 6.1 6.4	0.180 0.232 52.0 5.5 6.4 6.7	0.206 0.266 5.5 6.1 7.0 7.3	0.232 0.299 6.1 6.4 7.3 7.9
	A 43 *	m³/s side	5.8 6.4 0.149 0.055	6.7 7.3 0.199 0.074	7.6 8.2 0.249 0.092	8.2 9.2 0.299 0.111	8.8 9.8 0.348 0.129	9.5 10.4 0.398 0.147	10.1 11.0 0.448 0.166
	31 B	throw m	4.0 2.1 4.9 2.7 7.0 3.7	4.6 2.4 5.5 3.1 7.9 4.3	5.2 2.7 6.4 3.4 9.2 4.9	5.5 3.1 6.7 3.7 9.8 5.2	6.1 3.4 7.3 4.0 10.4 5.5	6.4 3.4 7.6 4.3 11.3 6.1	7.0 3.7 8.2 4.6 11.9 6.4
	33	m³/s side throw m	0.100 0.142 3.7 3.0 4.6 3.7	0.142 0.189 4.3 3.7 5.2 4.3	0.177 0.236 4.9 4.3 5.8 4.9	0.212 0.283 5.2 4.6 6.4 5.2	0.248 0.330 5.5 4.9 6.7 5.5	0.283 0.378 6.1 5.2 7.3 6.1	0.319 0.425 6.4 5.5 7.9 6.4
	В	m ³ /s side	6.4 .5.2 0.122 0.116	7.3 6.1 0.162 0.155	8.2 7.0 0.203 0.194	9.2 7.6 0.244 0.232	9.8 7.9 0.284 0.271	10.4 8.5 0.325 0.310	11.0 9.2 0.366 0.348
	B 37	throw m	3.7 3.7 4.6 4.6 6.4 6.4	4.3 4.3 5.2 5.2 7.3 7.3	4.9 4.9 5.8 5.8 8.2 8.2	5.2 5.2 6.4 6.4 9.2 9.2	5.5 5.5 6.7 6.7 9.8 9.8	6.1 6.1 7.3 7.3 10.4 10.4	6.4 6.4 7.9 7.9 11.0 11.0
	A 22, 23	m³/s side throw m	0.177 4.3 5.2	0.236 4.9 6.1	0.295 5.5 7.0	0.354 6.1 7.6	0.413 6.4 7.9	0.472 7.0 8.5	0.531 7.3 9.2
AD		m³/s side	7.3 0.244 0.111	8.5 0.325 0.147	9.8 0.406 0.184	10.4 0.405 0.221	11.3 0.568 0.258	12.2 0.650 0.295	12.8 0.731 0.331
AD 0.225 m ²	52 55 54 55 55 54	throw m	4.6 3.4 5.5 4.3 7.9 5.8	5.2 4.0 6.4 4.9 9.2 6.7	5.8 4.6 7.3 5.5 10.4 7.6	6.4 4.9 7.9 6.1 11.3 8.2	6.7 5.2 8.5 6.4 12.2 8.8	7.3 5.5 9.2 7.0 12.8 9.5	7.9 6.1 9.8 7.3 13.7 10.1
	12, 13	m³/s side throw m	0.354 5.2	0.472 6.1	0.590 7.0	0.708 7.6	0.826 7.9	0.944 8.5	1.060 9.2
			6.4 9.2	7.3 10.4	8.2 11.9	9.2 12.8	9.8 13.7	10.4 14.6	11.0 15.6

^{*} These cores are constructed to give as near as possible equal air flow in A & B directions.

Performance Data - \square \square \square

Size	Patterns	Neck Vel m/s	1.57	2.10	2.62	3.15	3.67	4.19	4.72
in mm	Return NC+6	TP Pa Total m³/s	0.372	0.496	17 0.618	0.743	0.869	0.991	1.110
	Factors -SP=2.3 TP	NC	9 A B 0.106 0.080	19 A B 0.142 0.106	26 A B 0.177 0.132	32 A B 0.212 0.159	36 A B 0.248 0.186	40 A B 0.283 0.212	A B 0.318 0.239
450 x 525	A 43	m³/s side throw m	3.1 2.4 3.7 3.1 5.2 4.3 0.146 0.080	3.7 2.7 4.3 3.4 6.1 4.9 0.195 0.106	4.3 3.1 4.9 4 7 5.5 0.243 0.133	4.6 3.4 5.2 4.3 7.6 6.1 0.292 0.159	4.9 3.7 5.5 4.6 7.9 6.4 0.341 0.186	5.2 4 6.1 4.9 8.5 7 0.389 0.212	5.5 4.3 6.4 5.2 9.2 7.3 0.438 0.239
	A 31	m³/s side throw m	4.0 2.4 4.9 3.1 7.0 4.3 0.132 0.109	4.6 2.7 5.5 3.4 7.9 4.9 0.176 0.144	5.2 3.1 6.4 4.0 9.2 5.5 0.219 0.180	5.5 3.4 6.7 4.3 9.8 6.1 0.263 0.217	6.1 3.7 7.3 4.6 10.4 6.4 0.308 0.253	6.4 4.0 7.6 4.9 11.3 7.0 0.351 0.289	7.0 4.9 8.2 5.2 11.9 7.3 0.395 0.325
	A 33	m³/s side throw m	4.0 2.7 4.9 3.4 7.0 4.9 0.133 0.119	4.6 3.1 5.5 4.0 7.9 5.5 0.177 0.159	5.2 3.4 6.4 4.6 9.2 6.4 0.221 0.198	5.5 3.7 6.7 4.9 9.8 6.7 0.266 0.238	6.1 4.0 7.3 5.2 10.4 7.3 0.310 0.278	6.4 4.3 7.6 5.5 11.3 7.6 0.354 0.317	7.0 4.6 8.2 6.1 11.9 8.2 0.399 0.357
	B 37	m³/s side throw m m³/s side	4.0 3.7 4.9 4.6 7.0 6.4	4.6 4.3 5.5 5.2 7.9 7.3 0.248	5.2 4.9 6.4 5.8 9.2 8.2 0.309	5.5 5.2 6.7 6.4 9.8 9.2 0.372	6.1 5.5 7.3 6.7 10.4 9.8 0.434	6.4 6.1 7.6 7.3 11.3 10.4 0.496	7.0 6.4 8.2 7.9 11.9 11.0
AD	A 22, 23	throw m	4.3 5.2 7.3	4.9 6.1 8.5 0.283 0.212	5.5 7.0 9.8 0.359 0.264	6.1 7.6 10.4 0.425 0.319	6.4 7.9 11.3 0.496 0.373	7.0 8.5 12.2 0.566 0.425	7.3 9.1 12.8 0.637 0.477
0.236 m²	52 55 54 54 53	m ³ /s side throw m m ³ /s side	4.3 3.7 5.2 4.6 7.3 6.4	4.9 4.3 6.1 5.2 8.5 7.3 0.496	5.5 4.9 7.0 5.8 9.8 8.2 0.618	6.1 5.2 7.6 6.4 10.4 9.2 0.743	6.4 5.5 7.9 6.7 11.3 9.8 0.869	7.0 6.1 8.5 7.3 12.2 10.4	7.3 6.4 9.1 7.9 12.8 11.0
	Return NC+7	throw m	5.2 6.4 9.2 0.425	6.1 7.3 10.4	7.0 8.2 11.9	7.6 9.2 12.8	7.9 9.8 13.7	8.5 10.4 14.6	9.2 11.0 15.6
	Return NC+7 Factors -SP=2.6 TP	NC m³/s side	11 A B 0.133 0.080	20 A B 0.177 0.106	27 A B 0.221 0.133	33 A B 0.266 0.159	37 A B 0.310 0.186	A B 0.354 0.212	45 A B 0.398 0.239
450 x 600	A 43	throw m	4.0 2.4 4.9 3.1 7.0 4.3 0.106 0.106	4.6 2.7 5.5 3.4 7.9 4.9 0.142 0.142	5.2 3.1 6.4 4.0 9.2 5.5 0.177 0.177	5.5 3.4 6.7 4.3 9.8 6.1 0.212 0.212	6.1 3.7 7.3 4.6 10.4 6.4 0.248 0.248	6.4 4.0 7.6 4.9 11.3 7.0 0.283 0.283	7.0 4.3 8.2 5.2 11.9 7.3 0.319 0.319
	45 *	throw m m³/s side	3.7 3.7 4.6 4.6 6.4 6.4 0.173 0.080	4.3 4.3 5.2 5.2 7.3 7.3 0.230 0.106	4.9 4.9 5.8 5.8 8.2 8.2 0.288 0.133	5.2 5.2 6.4 6.4 9.2 9.2 0.345 0.159	5.5 5.5 6.7 6.7 9.8 9.8 0.403 0.186	6.1 6.1 7.3 7.3 10.4 10.4 0.460 0.212	6.4 6.4 7.9 7.9 11.0 11.0 0.518 0.239
	31	throw m m³/s side	4.3 2.4 5.2 3.1 7.3 4.3 0.142 0.142	4.9 2.7 6.1 3.4 8.5 4.9 0.189 0.189	5.5 3.1 7.0 4.0 9.8 5.5 0.236 0.236	6.1 3.4 7.6 4.3 10.4 6.1 0.283 0.283	6.4 3.7 7.9 5.2 11.3 6.4 0.330 0.330	7.0 4.0 8.5 4.9 12.2 7.0 0.378 0.378	7.3 4.3 9.2 5.2 12.8 7.3 0.425 0.425
	△ A B B B 33	throw m m³/s side	4.0 3.1 4.9 3.7 7.0 5.2 0.133 0.146	4.6 3.7 5.5 4.3 7.9 6.1 0.177 0.195	5.2 4.3 6.4 4.9 9.2 7.0 0.221 0.243	5.5 4.6 6.7 5.2 9.8 7.6 0.266 0.292	6.1 4.9 7.3 5.5 10.4 7.9 0.310 0.340	6.4 5.2 7.6 6.1 11.3 8.5 0.354 0.389	7.0 5.5 8.2 6.4 11.9 9.2 0.399 0.438
	37	throw m m³/s side	4.0 4.0 4.9 4.9 7.0 7.0 0.212	4.6 4.6 5.5 5.5 7.9 7.9 0.283	5.2 5.2 6.4 6.4 9.2 9.2 0.354	5.5 5.5 6.7 6.7 9.8 9.8 0.425	6.1 6.1 7.3 7.3 10.4 10.4 0.496	6.4 6.4 7.6 7.6 11.3 11.3 0.566	7.0 7.0 8.2 8.2 11.9 11.9 0.637
AD	A 22, 23	throw m m³/s side	4.3 5.2 7.3 0.265 0.160	4.9 6.1 8.5 0.354 0.212	5.5 7.0 9.8 0.443 0.265	6.1 7.6 10.4 0.531 0.319	6.4 7.9 11.3 0.620 0.372	7.0 8.5 12.2 0.708 0.425	7.3 9.2 12.8 0.797 0.478
AD 0.27 m ²	52 55 55 54 53	throw m m³/s side	4.6 3.7 5.5 5.2 7.9 6.4 0.425	5.2 4.3 6.4 5.5 9.2 7.3 0.566	5.8 4.9 7.3 5.8 10.4 8.2 0.708	6.4 5.2 7.9 6.4 11.3 9.2 0.850	6.7 5.5 8.5 6.7 12.2 9.8 0.991	7.3 6.1 9.2 7.2 12.8 10.4 1.133	7.9 6.4 9.8 7.9 13.7 11.1 1.270
	12, 13	throw m	5.5 7.0 9.5	6.4 7.9 11.0	7.3 9.2 12.5	7.6 9.8 13.4	8.5 10.4 14.6	9.2 11.3 15.6	9.8 11.9 16.5
	Return NC+8 Factors -SP=3.2 TP	Total m³/s NC	0.496 12 A B	0.661 21 A B	0.826 28 A B	0.991 34 A B	1.156 38 A B	1.322 42 A B	1.490 46 A B
525 x 600	A A A A A A A A A A A A A A A A A A A	m³/s side throw m	0.139 0.109 3.4 2.7 4.3 3.4 5.8 4.9	0.186 0.144 4.0 3.1 4.9 4.0 6.7 5.5	0.233 0.180 4.6 3.4 5.5 4.6 7.6 6.4	0.279 0.217 4.9 3.7 6.1 4.9 8.2 6.7	0.326 0.253 5.2 4.0 6.4 5.2 8.8 7.3	0.372 0.289 5.5 4.3 7.0 5.5 9.5 7.6	0.419 0.325 6.1 4.6 7.3 6.1 10.1 8.2
	A 31	m³/s side throw m	0.194	0.258	0.323	0.387 0.217 6.1 3.7 7.6 4.9 10.4 6.7	0.452 0.253 6.4 4.0 7.9 5.2 11.3 7.3	0.517 0.289 7.0 4.3 8.5 5.5 12.2 7.6	0.581 0.325 7.3 4.6 9.2 6.1 12.8 8.2
	A 33	m³/s side throw m	0.177	0.236 0.189 4.9 3.7 6.1 4.3 8.5 6.1	0.295 0.236 5.5 4.3 7.0 4.9 9.8 7.0	0.354	0.414 0.331 6.4 4.9 7.9 5.5 11.3 7.9	0.471 0.377 7.0 5.2 8.5 6.1 12.2 8.5	0.532
	B 37	m³/s side throw m	0.170	0.227 0.217 4.3 4.3 5.2 5.2 7.3 7.3	0.283 0.271 4.9 4.9 5.8 5.8 8.2 8.2	0.340 0.326 5.2 5.2 6.4 6.4 9.2 9.2	0.397 0.380 5.5 5.5 6.7 6.7 9.8 9.8	0.453	0.510 0.486 6.4 6.4 7.9 7.9 11.0 11.0
AD	A 22, 23	m³/s side throw m	0.248 4.6 5.5 7.9 0.279 0.217	0.330 5.2 6.4 9.2 0.372 0.289	0.413 5.8 7.3 10.4 0.465 0.361	0.496 6.4 7.9 11.3 0.577 0.434	0.578 6.7 8.5 12.2 0.652 0.505	0.661 7.3 9.2 12.8 0.744 0.578	0.744 7.9 9.8 13.7 0.838 0.650
AD 0.315 m ²	52 54 55 55 54	m ³ /s side throw m m ³ /s side	4.9 4.0 6.1 4.9 8.5 7.0	5.8 4.6 7.0 5.5 9.8 7.9 0.661	6.7 5.2 7.9 6.4 11.3 9.2 0.826	7.0 5.5 8.5 6.7 11.9 9.8	7.6 6.1 9.2 7.3 12.8 10.4 1.160	8.2 6.4 10.1 7.6 13.7 11.3	8.8 7.0 10.7 8.2 14.6 11.9
	12, 13	throw m	5.8 7.3 10.1	6.7 8.2 11.6	7.6 9.5 13.1	8.2 10.1 14.3	8.8 11.0 15.3	9.5 11.6 16.5	10.1 12.5 17.4

 $^{{}^{*}}$ These cores are constructed to give as near as possible equal air flow in A & B directions.

CMPH – Ceiling Multi Pattern - Horizontal

Model: CMPH - Ceiling Multi Pattern - Horizontal

The CMPH series of diffusers was developed to increase the acceptable application range of multi-pattern type ceiling outlets, for the reduced volumetric flow levels typically associated with VAV systems.

It is a variation on the basic CMP series with a horizontal blade added to each blade, which increases the induction rate, resulting in rapid mixing of supply and room air, which produces a strong ceiling effect at lower flows, minimising dumping.

These diffusers are also ideal for lower than normal ceiling heights, or low fixed volume air flows such as those usually found in centre zones.

In general, they operate at higher pressure, noise level, and throw distance than the equivalent Model CMP at the same flow.

Construction

CMPH series diffusers are ruggedly constructed entirely of aluminium, are lightweight and have no heavy cast, or moulded components. Precision combination corner gussets and braces, keep mitres to a hairline and aluminium rivets hold the core components rigidly together, eliminating the possibility of warping, flexing, or rattling.

Panel diffusers (Type 2 on page 159D) are mechanically secured to steel panels with the unique Holyoake mounting pins, eliminating gaps and producing a super-fine junction between panel and extrusion.

Installation

The diffusers frame assembly is installed in the ceiling opening and attached and sealed to the supply duct. The extensive range of cores, all snap in to the frame surrounds, with nickel plated spring steel thumb clips.

Finish

All Holyoake aluminium diffusers receive a three stage preparation, prior to final finishing; cleaning, chemical etch and drying. This preparation ensures powder coat adhesion and precludes powder peeling, or flaking after installation.

Standard colour is Holyoake White.

Features

- All aluminium lightweight construction.
- · Precision mitred corners.
- · Selection of frame styles.
- Variety of throw patterns.
- Snap-in interchangeable cores.
- Tough powder coat finish.
- Lightweight Premi-Aire and galvanised cushion head boxes available.

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

Ceiling Multi Pattern - Horizontal - CMPH

Model: CMPH — Ceiling Multi Pattern Diffuser - Horizontal

Standard Flange Frame.

Designed for surface mounting on all types of ceilings, as well as lay-in ceiling tile applications.

Panel Diffuser.

Lay-in type for installation in suspended "T-Rail" type ceilings. Standard panel overall size is 595×595 to suit a 600×600 grid. Size 450×450 has an overall face size of 595×595 . It therefore does not require a panel in a 600 grid and fits "T-Rail" spacing with clearance*.

Drop Frame.

Lowers the face of the diffuser below the ceiling line. Can be used to reduce smudging, or against obstacles to minimise drafts. Can be supplied in any height from 50-81mm, but unless otherwise specified, frame height of 50 mm will be furnished.

Special order only.

Bevelled Drop Frame.

Smartly styled bevelled type surround reduces ceiling smudging. For all surface mounting applications.

Special order only.

Construction

Aluminium:

0.75mm extruded 6063-T5 aluminium outer frame.

0.55mm removable aluminium core.

Note: 0.75 mm Steel Panel on CMPH Type 2.
 Product weights are shown on page 161D.

Type 2

Type 1

Type 3

Type 4

CMPH – Performance Data

Return NC+1 Total m//s	3.67 48
Factors SPS_1_1 TP NC	0.083
150	28 A B
150	0.021 3.4
## 36*	4.6 7.3
No.	0.017 0.033 3.4 4.6
11	4.6 6.1 7.3 8.8
No.	0.041 4.8
	6.4 9.4
Return NC+3 Factors SP=1.3 TP NC NC NC NC NC NC NC N	0.083 5.9 7.9
NC NC NC NC NC NC NC NC	10.4 0.184
225	33 A B
AD	0.046 5.0
AD 0.051 m² 21	6.7 9.7
0.051 m² 21	0.037 0.074 4.8 5.9
11	6.4 7.9 9.1 11.3
No.	0.092 6.2
Return NC+5 Factors -SP=1.4 TP	8.2 10.7 0.184
Return NC+5 Factors -SP=1.4 TP	7.3 9.7
Factors -SP=1.4 TP NC	12.8
AD 0.090 m² 21	38 A B
AD	0.083 5.9
AD 0.090 m²	7.9 10.4
AD 0.090 m² 21 51 51	0.066 0.132 5.7 6.9 7.6 9.1
0.090 m² 21	10.1 12.2 0.165
NC NC NC NC NC NC NC NC	7.1 9.4
Throw m 0.75 2.3 3.9 5.5 6.4 7.3 8.5 9.7 10.1 11.6 12.8	12.5 0.330
Return Factors -SP=1.9 TP A B A B A B A B A B A B A B A B A B A	8.0 10.7
375 x 375 41 m³/s side 0.036 0.036 0.055 0.074 0.092 0.110 0.75 1.4 2.7 3.9 5.0 5.9 7.9 10.4 m³/s side 0.75 1.1 1.8 2.5 3.2 3.4 4.6 4.8 5.7 5.5 5.6 9 7.9 10.4 AD 0.141 m³/s side 0.75 1.1 1.8 2.5 3.2 3.4 4.6 4.8 5.7 5.6 9 7.3 9.1 10.1 10.1 10.1 12.2 m³/s side 0.75 1.8 3.4 5.0 5.9 7.1	0.514
375 x 375 x 375 x 375 x 375 x 377 41 throw m 0.50 1.8 3.7 5.2 6.7 7.9 3.9 6.4 7.9 9.7 10.4 0.75 1.1 1.8 2.5 3.2 3.4 4.6 4.8 5.7 5.5 6.9 1.8 0.75 1.1 1.8 2.5 3.2 3.4 4.6 4.8 5.7 5.5 6.9 1.1 1.8 2.5 3.2 3.4 4.6 4.8 5.7 5.5 6.9 1.1 1.8 2.5 3.2 3.4 4.6 4.8 5.7 5.5 6.9 1.8 0.77 1.1 0.147 0.141 0.147 0.141 0.147 0.144 0.141 0.	38 A B 0.128
375 0.25 3.4 6.4 7.9 9.7 10.4	6.6 8.8
AD 0.141	11.9 0.103 0.206
AD 0.25 3.0 5.8 6.1 7.0 7.3 9.1 9.4 10.1 10.1 12.2 0.141 0.141 0.147 0.144 0.220 0.141 0.141 0.75 1.8 3.4 5.0 5.9 7.1	6.4 7.8 8.5 10.4
0.141	11.0 14.3 0.257
	7.5 10.1
m³/s side 0.146 0.222 0.295 0.368 0.441	14.3 0.514
throw m 0.50 3.7 6.1 7.9 9.4 10.7	18.5 11.3 15.5
Return NC+7 Total m³/s 0.212 0.319 0.425 0.531 0.637	0.743 38
A B A B A B A B A B A B A B A B A B A B	A B 0.186
450 x 41 throw m 0.50 2.1 4.3 5.5 6.4 4.3 5.8 7.3 8.5	7.5 10.1
m³/s side 0.042 0.085 0.064 0.127 0.085 0.170 0.106 0.212 0.127 0.255	13.7 0.149 0.297
36* throw m 0.25 2.1 3.0 4.0 4.6 5.8 6.7 6.7 8.2 8.2 9.7	7.1 8.0 9.4 10.7
AD m³/s side 0.106 0.159 0.212 0.265 0.319	12.5 14.9 0.371 8.2
m ² 21 51 throw m 0.50 3.4 5.2 7.3 8.8 10.1	11.0 15.2
m ³ /s side 0.212 0.319 0.425 0.531 0.637	0.743 8.7
throw m 0.50 4.3 6.7 8.5 10.1 11.0	11.6 16.8

 $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions.

Performance Data – CMPH

Size		Pat	terns		Neck Vel m/s		1.04		1.57		2.10		2.62		3.15		3.67	
in mm			COINS		TP Pa		4		10		16		24		35		48	
					Static Pa		3		8		13		20		30		40	
	Return	NC+			Total m³/s NC		0.288		0.434		0.578 28		0.722 33		0.866 38		1.010 43	
	Factors	-512	=2.7 TP				Α .	В	A	В	A	В	A	В	A	В	A	В
			<u> </u>		m³/s side		0.072		0.109		0.144		0.180		0.217		0.252	
525			▼	41			1.8		3.4		5		5.9		7.1		8	
X 525				7.	throw m	0.50 0.25	2.4 5.8		4.6 7.3		6.7 9.7		7.9 10.4		9.4 12.5		10.7 14.9	
JEJ			×		m³/s side		0.058	0.115	0.087	0.174	0.116	0.231	0.144	0.289	0.173	0.346	0.202	0.404
			₽	20.4			1.8	2.7	3.2	4.1	4.6	5.7	5.5	6.9	6.4	7.5	7.5	8.2
				36*	throw m	0.50 0.25	2.4 5.8	3.7 6.4	4.3 7.0	5.5 8.2	6.1 8.8	7.6 10.1	7.3 10.1	9.1 12.2	8.5 11.3	10.1 13.7	10.1 13.4	11.0 15.5
AD			▼ B		m³/s side		0.144	0.4	0.217	0.2	0.289	10.1	0.361	16.6	0.433	13.1	0.505	13.3
0.276							2.7		4.3		5.9		7.1		7.8		8.5	
m²		21		51	throw m	0.50	3.7 6.4		5.8		7.9 10.4		9.4 12.5		10.4 14.6		11.3 15.8	
					m³/s side	0.25	0.288		8.5 0.434		0.578		0.722		0.866		1.010	
				44	111 / 3 3100		3.4		5.5		7.1		8.0		8.7		9.1	
				11	throw m	0.50	4.6		7.3		9.4		10.7		11.6		12.2	
	Potuse	NC+	0		Total m³/s	0.25	7.3 0.378		10.1 0.566		12.5 0.755		14.9 0.944		16.2 1.133		17.4 1.321	
	Return Factors		-9 =2.83 TP		NC		-		-		28		33		38		43	
	Tactors	-31	-E.03 TF				A	В	A	В	A	В	Α	В	A	В	A	В
600					m³/s side	0.75	0.094 2.5		0.142 3.9		0.189 5.5		0.236 6.4		0.283 7.5		0.330 8.2	
x				41	throw m	0.50	3.4		5.2		7.3		8.5		10.1		11.0	
600						0.25	6.1		7.9		10.1		11.3		13.7		15.5	
			^		m³/s side	0.75	0.076 1.8	0.151 3.0	0.113 3.4	0.227 4.6	0.151 5.0	0.302 5.9	0.189 5.9	0.378 7.3	0.227 7.1	0.453 8.0	0.264 7.8	0.529 8.5
				36*	throw m	0.50	2.4	4.0	4.6	6.1	6.7	7.9	7.9	9.7	9.4	10.7	10.4	11.3
			₩ R			0.25	6.1	6.7	7.3	9.1	9.7	10.4	10.4	12.8	12.5	14.9	14.3	15.8
AD 0.36	_		• •		m³/s side	0.75	0.188 3.0		0.283 5.0		0.378 6.6		0.472 7.5		0.566 8.2		0.661 8.7	
m ²		21		51	throw m	0.50	4.0		6.7		8.8		10.1		11.0		11.6	
				01		0.25	6.7		9.7		11.3		13.7		17.4		16.8	
	•				m³/s side	0.75	0.378 3.9		0.566 5.9		0.755 7.3		0.944 8.7		1.133 8.9		1.321 9.6	
				11	throw m	0.50	5.2		7.9		9.7		11.6		11.9		12.8	
			шшш			0.25	7.9		10.4		13.1		15.8		17.1		18.0	
	Return	NC-			Total m³/s		0.477		0.717		0.956 28		1.194 33		1.432 38		1.671 43	
	Factors	-SP	=3.3 TP		NC		- A	В	- A	В	28 A	В	33 A	В	36 A	В	43 A	В
			A		m³/s side		0.119		0.179		0.239		0.298		0.358		0.418	
675			√	41		0.75	2.7 3.7		4.6 6.1		5.7 7.6		6.9 9.1		7.8 10.4		8.5 11.3	
X 675				T.	throw m	0.50 0.25	5.7 6.4		9.1		7.6 10.4		12.2		14.6		15.8	
			X		m³/s side		0.095	0.191	0.143	0.287	0.191	0.382	0.239	0.478	0.286	0.573	0.334	0.668
			A	36*	throw m	0.75 0.50	2.3 3.0	3.0 4.0	3.9 5.2	5.0 6.7	5.5 7.3	6.4 8.5	6.4 8.5	7.5 10.1	7.5 10.1	8.5 11.3	8.0 10.7	8.7 11.6
				30 T	throw m	0.50	6.4	7.0	7.9	9.7	10.1	11.6	11.3	13.7	13.7	15.5	14.9	16.2
AD			▼B		m³/s side		0.238		0.359		0.478		0.597		0.716		0.835	
0.456		24	<u> </u>	F4	throw m	0.75	3.2 4.3		5.5 7.3		7.3 9.7		7.8 10.4		8.7 11.6		8.9 11.9	
m²		21		51	throw m	0.50 0.25	4.3 7.0		7.3 10.1		9.7 12.2		14.6		16.2		11.9 17.4	
					m³/s side		0.477		0.717		0.956		1.194		1.432		1.671	
				11	Ab vove vo	0.75 0.50	4.3 5.8		6.4 8.5		7.5 10.1		8.9 11.9		9.1 12.2		10.1 13.4	
				11	throw m	0.50	5.8 8.5		8.5 11.3		14.3		16.5		12.2 17.4		13.4	
825	Return	NC-	-9		Total m³/s		0.713		1.071		1.428		1.784		2.140		2.497	
Х	Factors		=3.5 TP		NC				23		28		33		38		43	
825			<u> </u>		m³/s side		0.178	В	0.268	В	0.357	В	0.446	В	A 0.535	В	A 0.624	В
AD				41	111 / 3 5106		3.0		4.8		6.6		7.5		8.0		8.7	
0.681				41	throw m	0.50	4.0		6.4		8.8		10.1		10.7		11.6	
m ²			V			0.25	7.0		9.7		11.3		13.1		14.9		16.2	

 $^{^{\}ast}$ These cores are constructed to give as near as possible equal air flow in A & B directions.

Guio	Guide Product Weights								
Appro	Approximate Weight in Kg.								
Size	CMPH141	CMPH241							
150 x 150	0.53	2.77							
225 x 225	0.91	2.84							
300 x 300	1.33	2.89							
375 x 375	1.79	2.94							
450 x 450	2.35	3.05							

CMPH – Performance Data

Size in mm	Patterns	Neck Vel m/s TP Pa	1.04	1.57 10	2.10 16	2.62 24	3.15 35	3.67 48
	Return NC+0 Factors -SP=1.3 TP	Static Pa Total m³/s NC	3 0.035 -	0.052 -	0.071 -	20 0.087 23	0.104 28	0.123 33
150 X 225	A A A A A A A A A A A A A A A A A A A	m ³ /s side 0.75 throw m 0.50	A B 0.012 0.006 0.7 0.5 0.9 0.6 2.1 0.9	A B 0.017 0.008 1.4 0.9 1.8 1.2 4.3 2.7	A B 0.024 0.012 2.6 1.8 3.4 2.4 6.1 5.8	A B 0.029 0.015 3.2 2.8 4.3 3.7 7 6.4	A B 0.035 0.017 4.1 3.2 5.5 4.3 8.2 7	A B 0.041 0.020 4.8 3.5 6.4 4.6 9.4 7.3
225	31	0.25 m ³ /s side 0.75 throw m 0.50 0.25	0.014 0.007 0.7 0.5 0.9 0.6 1.8 1.2	0.021 0.010 1.6 1.1 2.1 1.5 5.5 3.0	0.030 0.012 2.8 1.8 3.7 2.4 6.4 5.8	7 6.4 0.037 0.015 3.5 2.8 4.6 3.7 7.3 6.4	0.044 0.018 4.4 3.5 5.8 4.6 8.5 7.3	9.4 7.3 0.052 0.021 5.0 3.9 6.7 5.2 9.7 7.9
	A 32	m ³ /s side 0.75 throw m 0.50 0.25	0.013 0.011 0.7 0.7 0.9 0.9 2.1 1.5	0.020 0.017 1.6 1.1 2.1 1.5 4.6 3.0	0.027 0.022 3.0 2.3 4.0 3.0 6.7 6.1	0.033 0.028 3.9 3.0 5.2 4.0 7.9 7.0	0.040 0.033 4.6 3.7 6.1 4.9 9.1 7.6	0.046 0.039 5.5 4.4 7.3 5.8 10.1 8.5
	^A 22,23	m ³ /s side 0.75 throw m 0.50 0.25	0.018 0.8 1.1 2.6	0.026 2.0 2.6 5.5	0.035 3.6 4.8 8.0	0.043 4.7 6.2 9.5	0.052 5.5 7.3 11.0	0.061 6.6 8.8 12.1
AD 0.033 m ²	52 55 54 55 53	m ³ /s side 0.75 throw m 0.50 0.25	0.023 0.120 1.1 0.5 1.5 0.6 3.0 1.2	0.035 0.017 2.6 1.1 3.4 1.5 6.1 3.0	0.047 0.024 3.5 1.8 4.6 2.4 7.3 5.8	0.058 0.029 4.6 2.8 6.1 3.7 8.8 6.4	0.069 0.035 5.5 3.5 7.3 4.6 10.1 7.3	0.082 0.041 6.2 3.9 8.2 5.2 10.7 7.9
	12, 13	m ³ /s side 0.75 throw m 0.50 0.25	0.035 1.7 2.2 4.0	0.052 3.3 4.4 7.7	0.071 4.4 5.9 9.5	0.087 6.1 8.1 11.7	0.104 6.8 9.1 12.4	0.123 8.1 10.8 13.5
	Return NC+2 Factors -SP=1.7 TP	Total m³/s NC	0.047 - A B	0.071 - A B	0.094 - A B	0.118 23 A B	0.142 28 A B	0.165 33 A B
150 x 300	A 42 A 43	m ³ /s side 0.75 throw m 0.50 0.25	0.018 0.006 0.7 0.7 0.9 0.9 2.4 1.5	0.027 0.009 1.6 0.9 2.1 1.2 4.6 2.7	0.035 0.012 3.0 2.0 4.0 2.7 6.7 8.1	0.044 0.015 3.5 3.0 4.6 4.0 7.3 6.7	0.053 0.018 4.4 3.5 5.8 4.6 8.5 7.3	0.062 0.021 5.0 4.4 6.7 5.8 10.1 8.5
	31	m ³ /s side 0.75 throw m 0.50 0.25	0.020 0.006 0.7 0.7 0.9 0.9 2.1 1.5 0.023 0.012	0.031 0.009 1.8 1.4 2.4 1.8 5.8 3.7 0.035 0.018	0.041 0.012 3.0 2.6 4.0 3.4 7.0 6.1 0.047 0.024	0.052 0.015 3.9 3.0 5.2 4.0 7.9 7.0 0.060 0.029	0.062 0.018 5.0 3.9 6.7 5.2 9.7 7.9 0.071 0.035	0.072 0.021 5.7 4.6 7.6 6.1 10.1 9.1 0.083 0.041
	32	m ³ /s side 0.75 throw m 0.50 0.25 m ³ /s side	0.023 0.012 0.9 0.9 1.2 1.2 2.7 2.1 0.024	2.3 1.6 3.0 2.1 6.1 5.5	3.2 2.6 4.3 3.4 7.0 6.1	4.4 3.2 5.8 4.3 8.5 8.5 0.059	5.0 4.1 6.7 5.5 9.7 8.2	5.9 5.0 7.9 6.7 10.4 9.7 0.083
AD	^A 22, 23	0.75 throw m 0.50 0.25 m ³ /s side	1.1 1.5 3.3 0.036 0.011	2.2 2.9 5.9 0.054 0.017	3.8 5.1 8.4 0.071 0.023	5.2 6.9 10.2 0.090 0.028	6.0 8.0 11.7 0.108 0.034	7.1 9.5 12.4 0.125 0.040
0.045 m ²	52 54 55 53	0.75 throw m 0.50 0.25 m ³ /s side	1.4 0.7 1.8 0.9 3.4 1.5 0.047	2.8 1.4 3.7 1.8 6.4 3.7 0.071	3.9 2.6 5.2 3.4 7.9 6.1 0.094	5.0 3.0 6.7 4.0 9.7 7.0 0.118	5.9 3.9 7.9 5.2 10.4 7.9 0.142	6.6 4.6 8.8 6.1 12.2 9.1 0.165
	Return NC+2	0.75 throw m 0.50 0.25 Total m³/s	2.0 2.6 6.2 0.059	3.6 4.8 8.4 0.087	5.3 7.0 10.2 0.118	6.3 8.4 12.1 0.146	7.7 10.2 13.2 0.175	8.5 11.3 15.0 0.205
	Factors -SP=2.0 TP	NC m³/s side	A B	- A B 0.044	- A B 0.059	23 A B 0.073	28 A B 0.087	A B 0.103
150 x 375	^A 22, 23	0.75 throw m 0.50 0.25 m ³ /s side	1.4 1.8 3.7 0.047 0.012	3.0 4.0 7.3 0.070 0.017	4.1 5.5 8.8 0.094 0.024	5.5 7.3 11.0 0.117 0.029	6.6 8.8 12.1 0.140 0.035	7.7 10.2 13.2 0.165 0.040
AD	52 53 53	0.75 throw m 0.50 0.25 m ³ /s side	1.6 0.9 2.1 1.2 5.5 2.1 0.059	3.2 1.6 4.3 2.1 7.0 3.7 0.087	4.4 2.8 5.8 3.7 8.5 6.4 0.118	5.5 3.2 7.3 4.3 10.1 7.0 0.146	6.2 4.1 8.2 5.5 10.7 8.2 0.175	7.1 5.0 9.4 6.7 12.5 9.7 0.205
0.056 m²	Return NC+3	0.75 throw m 0.50 0.25 Total m³/s NC	2.2 2.9 7.0 0.071	3.8 5.1 8.4 0.106	5.5 7.3 11.0 0.142	6.8 9.1 12.1 0.177	8.3 11.0 14.6 0.212	9.1 12.1 15.7 0.248
150	Factors -SP=2.8 TP		- A B 0.035	- A B 0.053	- A B 0.071	23 A B 0.088	28 A B 0.106	A B 0.124
X 450 AD	^A 22, 23	m ³ /s side _{0.75} throw m _{0.25} m ³ /s side	1.7 2.2 4.0 0.071	3.3 4.4 7.7 0.106	4.4 5.9 9.5 0.142	6.0 8.0 11.7 0.177	6.8 9.1 12.4 0.212	8.0 10.6 13.6 0.248
0.068 m²	Return NC+4	0.75 throw m 0.50 0.25 Total m ³ /s	2.5 3.3 7.3 0.083	4.1 5.5 8.8 0.123	6.1 8.1 11.7 0.165	7.1 9.5 12.4 0.205	8.5 11.3 15.0 0.245	9.6 12.8 17.6 0.288
150 X 525	Factors -SP=3.4 TP	NC m³/s side	- A B 0.083	- A B 0.123	A B 0.165	A B 0.205	A B 0.245	33 A B 0.288
AD 0.079 m ²	Return NC+5	0.75 throw m 0.50 0.25 Total m ³ /s	2.5 3.3 7.3 0.071	4.4 5.9 9.1 0.106	6.3 8.4 12.1 0.142	7.4 9.9 12.8 0.177	9.1 12.1 15.7 0.212	9.6 12.8 17.9 0.248
	Factors -SP=4.1 TP	NC	A B 0.023 0.013	- A B 0.033 0.020	A B 0.044 0.027	A B 0.056 0.033	A B 0.066 0.040	A B 0.078 0.046
225 X 300	B 42 43	m ³ /s side _{0.75} throw m 0.50 0.25 m ³ /s side _{0.25}	0.9 0.7 1.2 0.9 2.7 2.1 0.029 0.013	2.3 1.6 3.0 2.1 6.1 5.5 0.043 0.020	3.0 2.8 4.0 3.7 7.0 6.4 0.058 0.027	4.4 3.2 5.8 4.3 8.5 7.0 0.072 0.033	5.3 4.1 7.0 5.5 9.7 8.2 0.086 0.040	5.9 5.3 7.9 7.0 10.4 10.1 0.101 0.046
AD 0.068	B 31	throw m 0.75 0.25 m³/s side 0.75	1.1 0.7 1.5 0.9 3.0 2.4 0.023 0.023 1.4 0.9	2.6 1.6 3.4 2.1 6.1 5.5 0.035 0.035 2.8 1.8	3.5 2.8 4.6 3.7 7.3 6.4 0.047 0.047 3.7 3.0	4.6 3.5 6.1 4.6 9.1 7.3 0.059 0.059 5.0 3.9	5.5 4.4 7.3 5.8 10.1 8.5 0.071 0.071 5.7 4.6	6.2 5.3 8.2 7.0 10.7 9.7 0.083 0.083 6.6 5.3
0.068 m²	32 B A 52 A B 54	throw m 0.50 0.25 m³/s side 0.75	1.4 0.9 1.8 1.2 3.4 2.4 0.045 0.026 1.8 0.7	2.6 1.6 3.7 2.4 6.4 5.8 0.066 0.040 3.5 1.6	3.7 3.0 4.9 4.0 7.9 6.7 0.089 0.053 4.6 2.8	6.7 5.2 9.7 7.9 0.111 0.066 5.7 3.5	7.6 6.1 10.4 9.1 0.133 0.079 6.4 4.4	8.8 7.0 11.3 9.1 0.155 0.093 7.3 5.3
	52 54 55 53	throw m 0.50 0.25	2.4 0.9 5.8 2.4	4.6 2.1 7.3 5.5	6.1 3.7 8.8 6.4	7.6 4.6 10.1 7.3	8.5 5.8 11.3 8.5	9.7 7.0 13.1 9.7

Performance Data – CMPH

Size in mm	Patterns	Neck Vel m/s TP Pa	1.04	1.57 10	2.10 16	2.62 24	3.15 35	3.67 48
	Return NC+4	Static Pa Total m³/s NC	0.088	0.132	0.177 -	0.221 28	30 0.266 33	0.310 38
225 x	Factors -SP=1.8 TP A A B B 43	m ³ /s side 0.75 throw m 0.50	A B 0.031 0.013 1.1 0.7 1.5 0.9	A B 0.046 0.020 2.6 1.8 3.4 2.4	A B 0.062 0.027 3.5 2.8 4.6 3.7	A B 0.078 0.033 4.6 3.5 6.1 4.6	A B 0.093 0.040 5.5 4.4 7.3 5.8	A B 0.109 0.046 6.2 5.5 8.2 7.3
375	31	0.25 m ³ /s side 0.75 throw m 0.50	3.0 2.4 0.037 0.013 1.4 0.7 1.8 0.9	6.1 5.8 0.056 0.020 2.8 1.8 3.7 2.4	7.3 6.4 0.075 0.027 3.7 3.0 4.9 4.0	9.1 7.3 0.094 0.033 5.0 3.9 6.7 5.2	10.1 8.5 0.113 0.040 5.7 4.6 7.6 6.1	11 10.1 0.132 0.046 6.6 5.5 8.8 7.3
	32	0.25 m ³ /s side 0.75 throw m 0.50	3.4 2.4 0.037 0.026 1.6 0.9 2.1 1.2	6.4 5.8 0.055 0.039 3.0 2.3 4.0 3.0	7.9 6.7 0.074 0.052 3.9 3.0 5.2 4.0	9.7 7.9 0.092 0.064 5.3 4.4 7.0 5.8	10.4 9.1 0.111 0.078 6.2 5.0 8.2 6.7	11.3 10.1 0.129 0.090 7.1 5.9 9.4 7.9
	A 22, 23	0.25 m ³ /s side 0.75 throw m 0.50	4.6 2.7 0.044 2.0 2.6	6.7 6.1 0.066 3.6 4.8	8.2 7.0 0.089 4.7 6.2	10.1 8.5 0.111 6.3 8.4	10.7 9.8 0.133 7.4 9.9	12.5 10.4 0.155 8.5 11.3
AD 0.084 m ²	52 54 55 53	0.25 m³/s side 0.75 throw m 0.50	5.5 0.062 0.026 1.8 0.7 2.4 0.9	8.0 0.093 0.039 3.5 1.8 4.6 2.4	9.9 0.124 0.053 5.0 3.0 6.7 4.0	12.1 0.155 0.066 5.9 3.9 7.9 5.2	12.8 0.159	15.0 0.218 0.092 7.6 5.5 10.1 7.3
	12, 13	0.25 m³/s side 0.75 throw m 0.50 0.25	5.8 2.4 0.088 2.8 3.7 7.3	7.3 5.8 0.132 4.4 5.9 9.1	9.8 6.7 0.177 6.3 8.4 12.1	10.4 7.9 0.221 7.7 10.2 13.2	12.2 9.8 0.266 9.1 12.1 15.7	13.7 10.1 0.310 9.6 12.8 17.9
	Return NC+4 Factors -SP=2.2TP	Total m³/s NC	0.105 -	0.159 -	0.213 -	0.265 28	0.319 33	0.372 38
225 X 450	42 43 A 43	m ³ /s side 0.75 throw m 0.50 0.25	A B 0.040 0.013 1.4 0.9 1.8 1.2 3.7 2.7	A B 0.060 0.020 2.8 2.0 3.7 2.7 6.4 6.1	A B 0.080 0.027 3.9 3.0 5.2 4.0 7.9 6.7	A B 0.100 0.033 5.0 3.9 6.7 5.2 9.8 7.9	A B 0.120 0.040 5.7 4.8 7.6 6.4 10.1 9.4	A B 0.140 0.046 6.6 5.7 8.8 7.6 11.9 10.1
430	A 31	m ³ /s side 0.75 throw m 0.50 0.25	0.046 0.013 1.6 0.9 2.1 1.2 4.6 2.7	0.070 0.020 3.0 2.3 4.0 3.0 6.7 6.1	0.093 0.027 3.9 3.2 5.2 4.3 8.2 7.0	0.116 0.033 5.3 4.4 7.0 5.8 10.1 8.5	0.140 0.040 6.2 5.0 8.2 6.7 10.7 9.8	0.163 0.046 7.1 5.9 9.4 7.9 12.5 10.4
	^A 22, 23	m ³ /s side 0.75 throw m 0.50 0.25	0.053 2.0 2.6 6.6	0.080 3.8 5.1 8.4	0.107 5.2 6.9 10.2	0.133 6.6 8.8 12.1	0.160 7.7 10.2 13.5	0.186 9.1 12.1 15.7
0.101 m ²	52 54 55 53	m ³ /s side 0.75 throw m 0.50 0.25 m ³ /s side	0.079 0.026 2.3 0.9 3.0 1.2 6.1 2.7 0.105	0.120 0.039 3.7 2.3 4.9 3.0 7.6 6.1 0.159	0.160 0.053 5.3 3.2 7.0 4.3 10.1 7.0 0.213	0.200 0.065 6.6 4.4 8.8 5.8 11.3 8.5 0.265	0.240 0.079 7.4 5.0 9.8 6.7 12.8 9.8 0.319	0.280 0.092 8.0 5.9 10.7 7.9 14.9 10.4 0.372
	12, 13	0.75 throw m 0.50 0.25	3.3 4.4 7.7	5.2 6.9 10.2	6.6 8.8 12.4	8.3 11.0 14.6	9.6 12.8 17.2	9.9 13.2 18.3
	Return NC+5 Factors -SP=2.6 TP	Total m³/s NC	0.123 - A B	0.185 - A B	0.248 23 A B	0.309 28 A B	0.372 33 A B	0.434 38 A B
225 x 525	42 B 43	m ³ /s side 0.75 throw m 0.50 0.25	0.049 0.013 1.4 0.9 1.8 1.2 4.3 2.7	0.073 0.020 3.0 2.0 4.0 2.7 6.7 6.1	0.097 0.027 3.9 3.2 5.2 4.3 7.9 7.0	0.122 0.033 5.0 4.1 6.7 5.5 10.1 8.2	0.146 0.040 5.9 5.0 7.9 6.7 10.4 9.8	0.171 0.046 6.8 5.9 9.1 7.9 12.2 10.4
323	31	m ³ /s side 0.75 throw m 0.50 0.25	0.055 0.013 1.6 0.9 2.1 1.2 5.2 2.7	0.083 0.020 3.2 2.3 4.3 3.0 7.0 6.1	0.111 0.027 4.4 3.5 5.8 4.6 8.5 7.3	0.138 0.033 5.5 4.4 7.3 5.8 10.1 8.5	0.166 0.040 6.4 5.3 8.5 7.0 11.0 10.1	0.194 0.046 7.4 6.2 9.8 8.2 12.8 10.7
AD 0.118 m ²	^A 22, 23	m ³ /s side 0.75 throw m 0.50 0.25	0.062 2.2 2.9 6.9	0.093 3.8 5.1 8.4	0.124 5.5 7.3 11.0	0.155 6.8 9.1 12.1	0.186 8.3 11.0 14.6	0.217 9.3 12.4 17.2
	52 54 55 53	m ³ /s side 0.75 throw m 0.50 0.25	0.097 0.026 2.6 0.9 3.4 1.2 6.4 2.7	0.146 0.039 3.9 2.3 5.2 3.0 7.9 6.1	0.196 0.052 5.3 3.5 7.0 4.6 10.1 7.3	0.244 0.065 6.6 4.4 8.8 5.8 11.3 8.5	0.294 0.078 7.6 5.3 10.1 7.0 13.1 10.1	0.342 0.092 8.3 6.2 11.0 8.2 15.5 10.7
	Return NC+3 Factors -SP=1.7 TP	Total m³/s NC	0.117 - A B	0.177 - A B	0.236 23 A B	0.295 28 A B	0.354 33 A B	0.413 38 A B
300 X 375	42	m ³ /s side 0.75 throw m 0.50 0.25	0.036 0.023 1.4 0.9 1.8 1.2 4.3 2.7	0.053 0.035 3.0 2.0 4.0 2.7 6.7 6.1	0.071 0.047 3.9 3.2 5.2 4.3 7.9 7.0	0.089 0.059 5.0 4.1 6.7 5.5 9.7 8.2	0.106 0.071 5.9 5.0 7.9 6.7 10.4 9.8	0.123 0.083 6.8 5.7 9.1 7.6 12.2 10.1
	31	m ³ /s side 0.75 throw m 0.50 0.25	0.047 0.023 1.6 0.9 2.1 1.2 5.2 2.7	0.071 0.035 3.0 2.3 4.0 3.0 6.7 6.1	0.095 0.047 4.4 3.2 5.8 4.3 8.5 7.0	0.118 0.059 5.3 4.4 7.0 5.8 10.1 8.5	0.142 0.071 6.4 5.3 8.5 7.0 11.0 10.1	0.165 0.083 7.1 6.2 9.4 8.2 12.5 10.7
	△ △ △ △ △ △ △ △ △ △	m ³ /s side 0.75 throw m 0.50 0.25	0.037 0.040 1.1 1.8 1.5 2.4 3.0 5.8	0.055 0.061 2.8 3.2 3.7 4.3 6.4 7.0	0.074 0.081 3.5 4.6 4.6 6.1 7.3 9.1	0.092 0.101 4.8 5.7 6.4 7.6 9.4 10.1	0.111 0.122 5.5 6.8 7.3 9.1 10.1 12.2	0.129 0.142 6.4 7.8 8.5 10.4 11.0 14.3
	22, 23	m ³ /s side 0.75 throw m 0.50 0.25	0.059 2.2 2.9 6.9	0.088 3.8 5.1 8.4	0.118 5.5 7.3 11.0	0.148 6.8 9.1 12.1	0.177 8.3 11.0 14.6	0.207 9.3 12.4 17.2
0.113 m ²	52 55 54 55 53	m ³ /s side 0.75 throw m 0.50 0.25	0.070 0.047 2.6 0.9 3.4 1.2 6.4 2.7	0.106 0.071 3.9 2.3 5.2 3.0 7.9 6.1	0.142 0.094 5.3 3.5 7.0 4.6 10.1 7.3	0.177 0.118 6.6 4.4 8.8 5.8 11.3 8.5	0.212 0.142 7.6 5.3 10.1 7.0 13.1 10.1	0.248 0.165 8.3 6.2 11.0 8.2 15.5 10.7
	12, 13	m ³ /s side 0.75 throw m 0.50 0.25	0.117 3.3 4.4 7.7	0.177 5.2 6.9 10.2	0.236 6.6 8.8 12.4	0.295 8.3 11.0 14.6	0.354 9.9 13.2 17.6	0.413 10.1 13.5 18.7

CMPH – Performance Data

Size	Patterns	Neck Vel m/s TP Pa	1.04	1.57 10	2.10 16	2.62 24	3.15 35	3.67 48
in mm	Return NC+4	Static Pa Total m³/s	5 3 0.140	0.212	13 0.283 23	20 0.354 28	30 0.425 33	40 0.496 38
200	Factors -SP=2.0 TP	NC m³/s side	A B 0.047 0.023	A B 0.071 0.035	A B 0.095 0.047	A B 0.118 0.059	A B 0.142 0.071 6.4 5.3	A B 0.165 0.083
300 X 450	B 42	0.75 throw m 0.50 0.25	1.6 1.1 2.1 1.5 5.2 2.7 0.059 0.023	3.2 2.3 4.3 3.0 6.7 6.1	5.8 4.6 8.5 7.3	7.3 5.8 10.1 8.5	8.5 7.0 11.0 10.1	9.8 7.9 12.8 10.4
	31	m ³ /s side 0.75 throw m 0.50	1.6 1.1 2.1 1.5	0.088 0.035 3.2 2.6 4.3 3.4	0.118 0.047 4.4 3.5 5.8 4.6	0.147 0.059 5.7 4.6 7.6 6.1	0.177 0.071 6.6 5.9 8.8 7.9	7.6 6.4 10.1 8.5
	A 22	0.25 m³/s side 0.75	5.5 3.0 0.053 0.044 2.0 1.4	7.0 6.1 0.079 0.066 3.5 2.8	8.5 7.3 0.106 0.089 5.0 3.7	10.1 8.8 0.133 0.111 5.9 5.0	11.3 10.4 0.159 0.133 7.1 5.7	13.1 11.0 1.860 0.155 8.0 6.6
	32	throw m 0.50 0.25 m³/s side	2.7 1.8 6.1 3.4 0.070	4.6 3.7 7.3 6.4 0.106	6.7 4.9 9.8 7.9 0.142	7.9 6.7 10.4 9.8 0.177	9.4 7.6 12.5 10.4 0.213	10.7 8.8 14.6 11.3 0.248
	^A 22, 23	0.75 throw m 0.50 0.25	2.5 3.3 7.3	4.1 5.5 8.8	6.0 8.0 11.7	7.1 9.5 12.4	8.5 11.3 15.0	9.6 12.8 17.6
0.135 m ²	52 54 53 54	m ³ /s side 0.75 throw m 0.50	0.093 0.047 2.8 1.1 3.7 1.5	0.141 0.071 4.1 2.6 5.5 7.1	0.189 0.094 5.7 3.5 7.6 4.6	0.236 0.118 7.1 4.6 9.4 6.1	0.283 0.142 7.8 5.7 10.4 7.6	0.331 0.165 8.5 6.4 11.3 8.5
		0.25 m ³ /s side 0.75 throw m 0.50	6.4 3.0 0.140 3.6	8.2 3.4 0.212 5.5	10.4 7.3 0.283 7.1	12.5 8.8 0.354 8.5	14.3 10.4 0.425 9.9	15.8 11.0 0.496 10.4
	Return NC+6	throw m 0.50 0.25 Total m ³ /s	4.8 8.0 0.165	7.3 10.6 0.248	9.5 12.8 0.330	11.3 15.0 0.413	13.2 17.9 0.496	13.9 19.4 0.578
	Factors -SP=2.3 TP	NC	- А В	- А В	23 A B	28 A B	33 A B	38 A B
300 X	42 43	m ³ /s side 0.75 throw m 0.50	0.060 0.023 1.8 1.1 2.4 1.5	0.089 0.035 3.2 2.6 4.3 3.4	0.118 0.047 4.4 3.5 5.8 4.6	0.148 0.059 5.7 4.6 7.6 6.1	0.177 0.071 6.6 5.5 8.8 7.3	0.206 0.083 7.6 6.2 10.1 8.2
525	A .	0.25 m³/s side 0.75	5.8 3.0 0.083 2.5	7.0 6.1 0.124 4.1	8.5 7.3 0.165 6.0	10.1 8.8 0.207 7.1	11.3 10.1 0.248 8.5	13.4 10.7 0.289 9.6
0.158 m ²	22, 23	throw m 0.50 0.25 m³/s side	3.3 7.3 0.118 0.047	5.5 8.8 0.177 0.071	8.0 11.7 0.236 0.094	9.5 12.4 0.295 0.118	11.3 15.0 0.355 0.141	12.8 17.6 0.413 0.165
	52 54 55 53	0.75 throw m 0.50 0.25	2.8 1.4 3.7 1.8 6.4 3.4	4.4 2.8 5.8 3.7 8.5 6.4	5.9 3.7 7.9 4.9 10.4 7.6	7.4 4.8 9.8 6.4 12.8 9.4	8.0 5.9 10.7 7.9 14.9 10.4	8.7 6.6 11.6 8.8 16.2 11.3
300	Return NC+6	Total m³/s NC	0.187	0.283	0.378 23	0.472 28	0.566 33	0.661 38
600	Factors -SP=2.7 TP	m³/s side	A B 0.071 0.023	A B 0.106 0.035	A B 0.142 0.047	A B 0.177 0.059	A B 0.212 0.071	A B 0.248 0.083
AD 0.180 m ²	42 43 A43	0.75 throw m 0.50 0.25	1.8 1.4 2.4 1.8 58 3.4	3.2 2.8 4.3 3.7 7.0 6.4	4.6 3.5 6.1 4.6 9.1 7.3	5.9 4.8 79 6.4 10.4 9.1	6.8 5.5 9.1 7.3 12.2 10.1	7.8 6.4 10.4 8.5 14.0 11.0
	Return NC+5 Factors -SP=2.1 TP	Total m³/s NC	0.177	0.264 -	0.354 23	0.441 28	0.532 33	0.618 38
375 X	▲ A	m³/s side 0.75	0.052 0.037 1.8 1.1	A B 0.077 0.055 3.0 2.8	A B 0.103 0.074 4.6 3.5	A B 0.129 0.092 5.7 4.6	A B 0.155 0.111 6.8 5.5	A B 0.180 0.129 7.6 6.2
450	42 43 A 43	throw m 0.50 0.25 m³/s side	2.4 1.5 5.8 3.0 0.069 0.037	4.0 3.7 6.7 6.4 0.105 0.055	6.1 4.6 9.1 7.3 0.140 0.074	7.6 6.1 10.1 8.8 0.175 0.092	9.1 7.3 12.2 10.1 0.210 0.111	10.1 8.2 13.4 10.7 0.245 0.129
AD 0.169	31	0.75 throw m 0.50 0.25	2.0 1.4 2.7 1.8 6.1 3.4	3.5 2.8 4.6 3.7 7.3 6.4	5.0 3.7 6.7 4.9 9.8 7.6	5.9 5.0 7.9 6.7 10.4 9.8	7.1 5.9 9.4 7.9 12.5 10.4	8.0 6.6 10.7 8.8 14.6 11.3
m ²	32	m ³ /s side 0.75	0.053 0.061 1.6 2.3 2.1 3.0	0.079 0.093 3.0 3.7 4.0 4.9	0.106 0.124 3.9 5.0 5.2 6.7	0.133 0.155 5.3 6.2 7.0 8.2	0.159 0.186 6.2 7.4 8.2 9.8	0.186 0.217 7.1 8.0 9.4 10.7
	Return NC+6	0.25 Total m³/s	4.6 6.1 0.205	6.7 7.6 0.309	8.2 10.1 0.413 23	10.1 10.7 0.516 28	10.7 12.8 0.620 33	12.5 14.9 0.723 38
	Factors -SP=2.2 TP	NC	A B	A B	A B	A B	A B	A B
375 X 525	31	m ³ /s side 0.75 throw m 0.50	0.084 0.037 2.0 1.4 2.7 1.8	0.127 0.055 3.7 3.0 4.9 4.0	0.170 0.074 5.3 3.9 7.0 5.2	0.212 0.092 6.2 5.3 8.2 7.0	0.255 0.111 7.6 5.9 10.1 7.9	0.297 0.129 8.0 6.8 10.7 9.1
525	A 32	0.25 m³/s side 0.75	6.4 4.3 0.072 0.067 2.0 1.8	7.6 6.7 0.108 0.100 3.9 3.2	9.8 7.9 0.145 0.134 5.5 4.4	10.7 10.1 0.181 0.168 6.4 5.5	13.1 10.4 0.217 0.202 7.6 6.4	14.9 11.6 0.253 0.235 8.3 7.4
	32	throw m 0.50 0.25 m³/s side	2.7 2.4 6.4 5.5 0.103	5.2 4.3 8.2 8.2 0.155	7.3 5.8 10.1 8.5 0.207	8.5 7.3 11.0 10.1 0.258	10.1 8.5 13.7 11.6 0.310	11.0 9.8 15.2 12.8 0.362
	^A 22, 23	0.75 throw m 0.50 0.25	2.8 3.7 7.7	4.7 6.2 9.9	6.6 8.8 12.1	7.7 10.2 13.2	9.1 12.1 16.5	9.9 13.2 18.3
AD 0.197 m ²	52	m ³ /s side 0.75 throw m 0.50	0.132 0.073 3.0 1.4 4.0 1.8	0.199 0.110 4.8 3.0 6.4 4.0	0.266 0.147 6.2 3.9 8.2 5.2	0.332 0.184 7.6 5.3 10.1 7.0	0.399 0.221 8.3 5.9 11.0 7.9	0.465 0.258 8.7 6.8 11.6 9.1
		0.25 m³/s side	7.0 4.3 0.205	9.4 6.7 0.309	10.7 7.9 0.413	13.7 9.1 0.516	15.2 10.4 0.620	16.5 11.6 0.723
	12, 13	0.75 throw m 0.50 0.25	3.8 5.1 8.4	6.1 8.1 11.7	8.0 10.6 13.5	9.1 12.1 17.2	10.1 13.5 18.7	10.7 14.3 19.8
	Return NC+7 Factors -SP=2.7TP	Total m³/s NC	0.234	0.353	0.473 23	0.590 28	0.709 33	0.826 38
375	A B	m³/s side 0.75	0.080 0.037 2.3 1.4	A B 0.122 0.055 3.5 3.0	A B 0.163 0.074 5.0 3.9	0.203 0.092 6.2 5.0	A B 0.244 0.111 7.1 5.9	A B 0.284 0.129 7.8 6.6
e00	B 42	throw m 0.50 0.25 m³/s side	3.0 1.8 6.1 4.3 0.117	4.6 4.0 7.3 6.7 0.177	6.7 5.2 9.8 8.2 0.237	8.2 6.7 10.7 9.8 0.295	9.4 7.9 12.5 10.4 0.355	10.4 8.8 14.6 11.6 0.413
	^A 22, 23	0.75 throw m 0.50 0.25	3.3 4.4 7.7	5.2 6.9 10.2	6.8 9.1 12.1	8.0 10.6 13.9	9.3 12.4 17.6	10.1 13.5 19.0
AD 0.225 m ²	52 55 54 53	m ³ /s side 0.75 throw m 0.50	0.161 0.073 3.2 1.6 4.3 2.1	0.243 0.110 5.0 3.2 6.7 4.3	0.325 0.148 6.4 4.4 8.5 5.8	0.405 0.185 7.6 5.5 10.1 7.3	0.487 0.222 8.5 6.2 11.3 8.2	0.567 0.259 8.9 7.1 11.9 9.4
	55 53	0.25 m³/s side	7.0 5.2 0.234	9.8 6.7 0.353	11.3 8.2 0.473	13.7 10.1 0.590	15.5 10.7 0.709	16.8 12.5 0.826
	12, 13	0.75 throw m 0.50 0.25	3.8 5.1 8.8	6.1 8.1 11.7	8.3 11.0 14.6	9.3 12.4 17.6	10.1 13.5 19.4	10.7 14.3 20.1

Performance Data – CMPH

Size in mm	Patterns	Neck Vel m/s TP Pa Static Pa	1.04 5	1.57 10	2.10 16	2.62 24	3.15 35	3.67 48
	Return NC+6	Total m³/s	3 0.246	0.371	0.496	20 0.619	30 0.744	40 0.867
	Factors -SP=2.3 TP	NC	- A B	A B	23 A B	28 A B	33 A B	38 A B
450 x 525	31	m ³ /s side 0.75 throw m 0.50 0.25	0.097 0.05 2.6 1.6 3.4 2.1 6.4 5.2 0.123	3 0.146 0.079 3.9 3.2 5.2 4.3 7.9 6.7 0.186	0.195 0.106 5.3 4.4 7.0 5.8 10.1 8.5 0.248	0.243 0.133 6.6 5.5 8.8 7.3 11.3 10.1 0.310	0.292 0.159 7.6 6.2 10.1 8.2 13.7 10.7 0.372	0.341 0.186 8.3 7.4 11.0 9.8 15.2 12.8 0.434
AD	^A 22, 23	m ³ /s side 0.75 throw m 0.50 0.25 m ³ /s side	3.3 4.4 7.7 0.193 0.05	5.2 6.9 10.2	6.8 9.1 12.1 0.390 0.106	8.0 10.6 14.6 0.487 0.132	9.3 12.4 17.9 0.585 0.159	10.1 13.5 19.4 0.681 0.186
0.236 m²	52 B 54 53	0.75 throw m 0.50 0.25 m ³ /s side	3.2 1.6 4.3 2.1 7.0 5.2 0.246	5.0 3.2 6.7 4.3 9.8 6.7 0.371	6.6 4.4 8.8 5.8 11.6 8.5 0.496	7.6 5.5 10.1 7.3 14.0 10.1 0.619	8.5 6.2 11.3 8.2 15.5 10.7 0.744	8.9 7.4 11.9 9.8 16.8 12.8 0.867
	12, 13	0.75 throw m 0.50 0.25	4.1 5.5 8.8	6.3 8.4 12.1	8.5 11.3 15.0	9.9 13.2 17.6	10.4 13.9 19.8	10.7 14.3 20.5
	Return NC+7 Factors -SP=2.6 TP	Total m³/s NC	0.281 - A B	0.424	0.567 23 A B	0.707 28 A B	0.851 33 A B	0.991 38 A B
450 X 600	42	m ³ /s side 0.75 throw m 0.50 0.25	0.088 0.05 2.6 1.6 3.4 2.1 6.4 5.2	3.9 3.0 5.2 4.0 7.9 7.0	0.178 0.106 5.5 4.1 7.3 5.5 10.1 8.5	0.221 0.133 6.4 5.3 8.5 7.0 11.3 10.1	0.267 0.159 7.6 6.4 10.1 8.5 13.7 11.0	0.310 0.186 8.3 7.1 11.0 9.4 15.5 12.5
	31	m ³ /s side 0.75 throw m 0.50 0.25	0.114 0.05 2.8 1.8 3.7 2.4 6.4 5.8 0.094 0.09	4.4 3.2 5.8 4.3 8.5 7.0	0.230 0.106 5.7 4.6 7.6 6.1 10.1 8.8 0.189 0.189	0.287 0.133 6.8 5.7 9.1 7.6 12.2 10.1 0.236 0.236	0.346 0.159 8.0 6.6 10.7 8.8 14.6 11.3 0.284 0.284	0.403 0.186 8.5 7.6 11.3 10.1 15.5 13.1 0.330 0.330
	32	m ³ /s side 0.75 throw m 0.50 0.25 m ³ /s side	3.0 2.0 4.0 2.7 6.7 6.1	4 0.141 0.141 4.6 3.5 6.1 4.6 8.8 7.3 0.212	5.9 5.0 7.9 6.7 10.4 9.8	7.1 5.9 9.4 7.9 12.5 10.4	8.0 7.1 10.7 9.4 14.9 12.5 0.426	8.7 8.0 11.6 10.7 16.2 14.6 0.496
AD	A 22, 23	0.75 throw m 0.50 0.25 m ³ /s side	3.6 4.8 8.0 0.228 0.05	5.5 7.3 10.6	7.1 9.5 12.4 0.461 0.106	8.5 11.3 15.0 0.574 0.133	9.6 12.8 18.3 0.691 0.160	10.4 13.9 19.8 0.805 0.186
0.270 m²	52 55 55 55 54 53	0.75 throw m 0.50 0.25 m ³ /s side	3.5 1.8 4.6 2.4 7.3 5.8 0.281	5.3 3.2 7.0 4.3 10.1 7.0 0.424	6.8 4.6 9.1 6.1 12.2 8.8 0.567	7.8 5.7 10.4 7.6 14.3 10.1 0.707	8.7 6.6 11.6 8.8 15.8 11.3 0.851	9.2 7.6 12.2 10.1 17.1 13.1 0.991
	12, 13	0.75 throw m 0.50 0.25	4.1 5.5 8.8	6.8 9.1 12.4	8.5 11.3 15.4	10.1 13.5 17.9	10.4 13.9 20.1	11.0 14.6 20.9
	Return NC+9 Factors -SP=3.2 TP	Total m³/s NC	0.369 - A B	0.556 - A B	0.744 23 A B	0.928 28 A B	1.116 33 A B	1.301 38 A B
525 X 675	31	m ³ /s side 0.75 throw m 0.50 0.25	0.148 0.07 3.0 2.0 4.0 2.7 6.7 6.1	2 0.224 0.108 4.6 3.5 6.1 4.6 9.1 7.3	0.300 0.145 5.9 5.0 7.9 6.7 10.4 9.8	0.374 0.181 7.1 5.9 9.4 7.9 12.5 10.4	0.450 0.217 8.5 7.1 11.3 9.4 15.5 12.5	0.524 0.253 8.7 7.8 11.6 10.4 16.2 13.7
	A 32	m ³ /s side 0.75 throw m 0.50 0.25	0.125 0.11 3.2 2.3 4.3 3.0 7.0 6.1 0.185	8 0.189 0.179 5.0 3.9 6.7 5.2 9.8 7.9 0.278	0.252 0.239 6.4 5.0 8.5 6.7 11.0 10.1 0.372	0.315 0.298 7.6 6.4 10.1 8.5 13.4 11.6 0.464	0.379 0.359 8.3 7.6 11.0 10.1 15.2 13.1 0.558	0.441 0.418 18.9 8.0 11.9 10.7 16.5 14.9 0.651
	^A 22, 23	m ³ /s side 0.75 throw m 0.50 0.25	3.8 5.1 8.4	6.0 8.0 11.7	7.7 10.2 13.2	9.1 12.1 16.1	9.9 13.2 18.7	10.7 14.3 20.1
0.354 m ²	52 54 55 53	m ³ /s side 0.75 throw m 0.50 0.25	0.297 0.07 3.7 2.0 4.9 2.7 7.6 6.1	5.5 3.5 7.3 4.6 10.4 7.3	0.599 0.145 7.1 5.0 9.4 6.7 12.5 9.8	0.748 0.180 8.0 5.9 10.7 7.9 14.9 10.4	0.899 0.217 8.7 7.1 11.6 9.4 16.2 12.5	1.048 0.253 9.4 7.8 12.5 10.4 17.4 13.7
	12, 13	m ³ /s side 0.75 throw m 0.50 0.25	0.369 4.7 6.2 9.5	0.556 7.1 9.5 12.8	0.744 8.8 11.7 15.7	0.928 10.4 13.9 19.0	1.116 10.7 14.3 20.5	1.301 11.6 15.4 21.6
525 X 825	Return NC+9 Factors -SP=3.3 TP	Total m³/s NC	0.450 - A B		0.910 23 A B	1.135 28 A B	1.364 33 A B	1.590 38 A B
0.433 m ²	43 43	m ³ /s side 0.75 throw m 0.50 0.25	0.153 0.07 3.0 2.3 4.0 3.0 6.7 6.1	2 0.232 0.108 4.6 3.5 6.1 4.6 8.8 7.3	0.310 0.145 5.9 5.0 7.9 6.7 10.4 9.7	0.387 0.181 7.1 5.9 9.4 7.9 12.5 10.4	0.465 0.217 8.0 7.1 10.7 9.4 15.2 12.5	0.542 0.253 8.7 7.6 11.6 10.1 16.2 13.7
600	Return NC+9 Factors -SP=3.5TP	Total m³/s NC	0.468 - A B	0.707 - A B	0.945 23 A B	1.179 28 A B	1.418 33 A B	1.652 38 A B
750	42 43 A43	m ³ /s side 0.75 throw m 0.50 0.25	0.140 0.09 3.0 2.3 4.0 3.0 6.7 6.1	4 0.212 0.141 4.8 3.5 6.4 4.6 9.1 7.3	0.284 0.189 6.2 5.0 8.2 6.7 10.7 9.8	0.354 0.236 7.4 6.2 9.8 8.2 12.8 10.7	0.425 0.284 8.0 7.1 10.7 9.4 15.2 12.5	0.496 0.330 8.9 8.3 11.9 11.0 16.5 14.6
0.450 m ²	▲ 32	m ³ /s side 0.75 throw m 0.50 0.25	0.161 0.14 3.2 2.6 4.3 3.4 7.3 6.4		0.325 0.295 6.8 5.7 9.1 7.6 12.2 10.4	0.405 0.368 7.8 6.6 10.4 8.8 14.6 11.9	0.487 0.443 8.5 7.8 11.3 10.4 16.2 14.6	0.568 0.516 9.2 8.5 12.2 11.3 17.1 15.8

CMPP - Plaque Ceiling Diffuser

Model: CMPP Plaque Diffuser

The CMPP Plaque Diffuser offers an alternative appearance to the CMP series of diffuser, where the performance characteristics of a traditional louvered face diffuser are required. The CMPP is a variation on the CMP diffuser where the inner louvers are replaced with a plaque, leaving only the outer slot available for air supply.

Features

- Clean Modern Architectural design.
- · 4- way air distribution pattern.
- · Removable core.
- Extended throw projection.
- Low noise generation.
- Durable powder coat finish.
- · Lightweight Premi-Aire and galvanised cushion head boxes available.

Performance

The CMPP has a throw pattern similar to a CMPH diffuser and as such is suitable for variable volume applications. Due to the inner louvers having been replaced with a blanking plaque, the amount of air that the CMPP can handle is small compared to other similar sized diffusers. The CMPP would most often be specified due to its visual appearance.

Construction

CMPP Plaque diffusers are constructed of aluminium. Precision combination corner gussets and braces keep mitres to a hairline. Aluminium rivets hold the fascia rigidly to an aluminium frame, to form a sturdy plaque core. The core snaps into the surround with nickel plated spring steel thumb clips. The CMPP is supplied with a robust powdercoat finish.

	Series CMPP — Performance Data							
LISTED DUCT SIZE	Total Pressure(Pa)	6	11	18	25	35	45	57
450, 450	m³/s	0.025	0.037	0.046	0.055	0.065	0.072	0.081
150 x 150 (295 overall)	Throw	0.1-1.9	0.4-2.5	0.9-3.3	1.3-4.1	1.6-4.5	1.9-5.0	2.3-5.1
(233 overall)	NC	<15	<15	<15	<15	15	18	21
225225	m³/s	0.041	0.059	0.072	0.086	0.104	0.119	0.142
225 x 225 (370 overall)	Throw	0.3-2.3	0.9-3.2	1.5-4.1	2.1-4.9	2.6-5.5	3.3-6.1	4.4-7.0
(Si o overan)	NC	<15	<15	<15	<15	15	18	21
200 200	m³/s	0.056	0.080	0.102	0.121	0.142	0.160	0.185
300 x 300 (445 overall)	Throw	1.0-3.4	1.7-4.9	2.3-5.5	2.9-5.6	3.4-6.4	3.8-7.1	4.4-8.0
(445 overall)	NC	<15	<15	<15	<15	16	19	22
275 275	m³/s	0.074	0.102	0.134	0.165	0.193	0.204	0.234
375 x 375 (520 overall)	Throw	1.7-3.9	2.0-4.9	2.7-5.8	3.2-6.0	3.7-6.6	3.9-6.8	4.4-7.5
(SEO OVERAIL)	NC	<15	<15	<15	18	22	23	27
450 x 450	m³/s	0.092	0.122	0.155	0.186	0.218	0.244	0.274
(595 overall)	Throw	1.5-4.5	2.3-5.0	3.1-6.1	3.6-6.5	4.0-6.8	4.3-7.0	4.7-7.3
	NC	<15	<15	<15	16	21	24	26

Performance Note

Throw values are given for terminal velocities of 0.75 and 0.25 m/s respectively.

Guide Product Weights						
Description	Approximate Weight in Kg.					
СМРР	2.05					
450 x 450	2.95					

CMP-TL - Ceiling Multi Pattern Thermal

Model: CMP-TL Ceiling Thermal Diffuser

The CMP-TL Diffuser delivers a large volume of air, as well as offering the same exceptional pattern change characteristics as the CRA-T. The diffuser is based on the time proven CMP range, but with the added benefit of being able to supply a vertical stream of air, when an air conditioning system is in heating mode. This vertical stream is supplied through a central core which is controlled by a thermally actuated damper. The damper will start closure with supply air temperatures below 24°C and start to open when above 30°C.

The diffuser is designed to "lay-in" to a standard "T-Rail" ceiling system, as well as being able to be mounted in a solid ceiling. Duct entry must be vertical onto the back of the diffuser, to ensure a vertical projection through the thermally actuated damper.

Features

- Automatic air pattern change.
- High air flow capabilities.
- 4 way horizontal air flow pattern.
- Vertical airstream on heating mode
- Modern architectural design with Removable Core.
- · Lay in diffuser size.
- Durable powder coat finish.

Construction

CMP-TL Diffusers are constructed out of aluminium. Precision combination corner gussets and braces keep mitres to a hairline. Cores snap into surrounds with nickel plated spring steel thumb clips. The central thermally actuated damper is constructed of a tough UV stabilised and fire rated engineering polymer.

Notes on Performance Data

- 1. All Performance data is based on isothermal conditions.
- 2. Performance data is based on a vertical square entry duct attached to the back of the diffuser.
- 3. NC values are based on a room absorption of 10dB, re 10⁻¹² watts.

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

Guide Product Weights						
Description	Approximate Weight in Kg.					
CMP-TL	1.94					
450 x 450	1.54					

Ceiling Multi Thermal Diffuser

Face View

⊢ Ceiling Opening 539 →	Frame Type 2
Nominal Neck Size 450	
444	~ 595
	102
	5,57
595 37.5 →	<u> </u>
CMP-TL, Frame Type 1, Surface Mount.	ı

	Performance Data for 450 X 450 Neck Size											
Flow, m ³ /s		0.050	0.100	0.200	0.300	0.400						
Neck Velocity, m/s		0.28	0.56	1.12	1.67	2.22						
Velocity Pressure, Pa		-	0.5	1	2	3						
HORIZONTAL PROJECTION Pt (Pa)	٧	-	2.5	6	12	20						
Throw (m) to Vt of:	0.75 m/s	0.7	1.3	2.0	2.7	3.5						
	0.50 m/s	1.0	1.8	2.8	3.5	4.2						
	0.25 m/s	3.0	3.5	3.8	4.3	5.0						
	NC	<10	<10	20	33	40						
VERTICAL PROJECTION Pt (Pa)		-	2	5	10	17						
Downward Flow, m ³ /s		0.010	0.025	0.040	0.050	0.062						
Throw (m) to Vt of:	0.50 m/s	0.5	1	2	4	4.5						
	NC	<10	11	32	33	37						

Ceiling Multi Pattern Adjustable Vanes – CMP-ADJ

Model: CMP-ADJ — Ceiling Multi Pattern Adjustable Vanes

The CMP-ADJ adjustable vane diffuser was developed to provide a continuous adjustment from horizontal to vertical throw, on each face of a four way, or multi pattern CMP-A (Aluminium) diffuser.

Features

- Fully adjustable throw pattern.
- Independent discharge pattern each side.
- Horizontal, or vertical throws.
- No adjustment tools required.
- · Adjust through diffuser face.
- 4 way, or multi pattern core styles available up to 600 x 600 mm neck size.

Construction

CMP-ADJ diffusers are standard CMP-A aluminium construction, with clip-on extruded aluminium 6063 T5 adjustable throw vanes, all supplied in a durable powder coat finish to match the diffuser.

Notes on Performance Data

To obtain the performance data for the CMP-ADJ adjustable diffuser, apply the corrections from the table below to the listed data for square, 4 way core style CMP diffusers, as follows:

- 1. Sound: NC = listed + correction
- 2. Pressure drop: TP = listed x factor
- 3. Throw: Horizontal = listed, Vertical = listed x factor

Apply the throw factor to the 0.25 m/s terminal velocity throw only.

Example: 300×300 CMP-ADJ, 0.280 m³/s, 20° C temperature difference heating, vertical projection:

NC=27+7=34 TP=25x2.3=57.5

Throw = $4.5 \times 0.6 = 2.7 \text{m}$ at 0.25 m/s terminal velocity.

Note: Refer to page 170D for Product weights.

						Throw,	Vertical	
Neck Size		nd, NC dd	Press Mul	ure, IP tiply	Cooling, ∆T Multiply	Heating, ∆T Multiply		
	Н	٧	Н	٧	10°	0°	10°	20°
150 x 150	3	7	1.3	1.6	1.3	1.1	0.8	0.6
225 x 225	3	7	1.5	2.3	1.5	1.2	0.9	0.6
300 x 300	3	7	1.5	2.3	1.6	1.3	1.0	0.6
375 x 375	3	7	1.5	2.3	1.7	1.3	1.0	0.6
450 x 450	3	7	1.5	2.3	1.7	1.3	0.9	0.6
525 x 525	3	7	1.5	2.3	1.7	1.3	0.8	0.5
600 x 600	3	7	1.5	2.3	1.5	1.1	0.7	0.3

Due to a policy of continuous development and improvement the right is reserved to supply products which may differ slightly from those illustrated and described in this publication.

"HOLDIT" MOUNTING CLIP

The "Holdit" Mounting Clip

Suitable for All Frame Type 1, CMP and CMPH Diffusers

Set the trigger into the loaded position and lift the ceiling diffuser up into the ceiling opening.

As the ceiling diffuser is lifted the trigger will activate the spring loaded holding arm to pull the diffuser up to the ceiling.

This innovative ceiling diffuser fixing device has been developed to make the fixing of CMP diffusers a breeze. Unlike other fixing devices*, the installer can try a ceiling diffuser in a ceiling opening with the HOLDIT clip in the UNLOADED position before final installation. Once satisfied that the diffuser will fit neatly into the opening, ensuring a tight fit up to the ceiling

and covering all edges of the hole, the HOLDIT clip may be loaded. When the ceiling diffuser is repositioned into the ceiling opening, the trigger will activate the spring loaded arm and pull the ceiling diffuser up to the ceiling and HOLDIT securely in place with no unsightly screws, or fixing.

* Other fixing accessories are available from your local Holyoake branch. Refer to Section K "Accessories" for a range of supplementary equipment.

	Guide Product Weights									
A	pproximate Weight in Kg.									
Size	CMP-ADJ	CMPH-ADJ								
150 x 150	0.73	0.75								
225 x 225	1.11	1.25								
300 x 300	1.60	1.60								
375 x 375	1.76	1.95								
450 x 450	2.55	2.91								

CMP-A, CMP-ADJ & CMPH

Product Ordering Key and Suggested Specifications

Ceiling Multi Pattern Louver Face diffusers shall be type CMP-A and be all Aluminium construction with removable core, to give the air distribution pattern shown on the drawings. They shall be available with a range of frame styles and purpose made accessories for both throw adjustment and volume control.

All shall be as manufactured by Holyoake.

Ceiling Multi Pattern - Adjustable Louver Face diffusers shall be type CMP-ADJ. They shall be of all Aluminium construction, with removeable cores. CMP-ADJ are fitted with vanes which can easily be adjusted to enable vertical, or horizontal throw.

All shall be as manufactured by Holyoake.

Ceiling Multi Pattern Horizontal Louver Face diffusers shall be type CMPH and be all Aluminium construction with additional horizontal blades. Complete with removeable core to give multiple air distribution patterns. They shall be available with a range of frame styles and accessories for both throw adjustment and volume control.

All shall be as manufactured by Holyoake.

Note: All ceiling diffusers, seismic restraints required, but not supplied.

CMPP & CMP - TL

Product Ordering Key and Suggested Specifications

Ceiling Multi Pattern - Plaque Louver Face diffusers shall be type CMPP. They shall be of all Aluminium construction, with removeable plaque core. CMPP have a range of frame styles and accessories for installation and volume control.

All shall be as manufactured by Holyoake.

Ceiling Multi Pattern - Thermal Low Cost Louver Face diffusers shall be type CMP-TL. They shall be of Aluminium construction, with removeable cores. CMP-TL central cores, are complete with a vertical supply section controlled by a thermally actuated damper. Supply air is diffused horizontally below temperatures of 24°C and vertically with temperatures above 30°C.

All shall be as manufactured by Holyoake.

Note: All ceiling diffusers, seismic restraints required, but not supplied.

DIFFUSERS CEILING SQUARE FACE ROUND NECK

CSRDCeiling Square Face Round Neck Disc180 - 181DCSRVCeiling Square Face Round Neck - Plaque VAV180 - 181DOrdering Key & Specification182DTypical VAV System Zone Map182D

- Square face, Round neck, Louver type and Plaque type
- Thermal, Electric and Pneumatic versions
- Variable volume diffusers
- Pressure dependant versions with modulating damper
- Steel, or Aluminium construction
- Removeable core
- Full range of air distribution patterns
- Adjustable horizontal to vertical blade option
- Infra red remote control version

CSRD & CSRV-VAV

Diffusers

All models are designed to control the temperature in a space by having the ability to change the supply air volume.

All diffusers have a standard outer body that is sized to lay-in to a standard 600mm wide ceiling grid (Frame Type 2).

The outer body is shaped to give a radial diffusion pattern and strong ceiling effect across a wide range of flow rates.

Model: CSRD

The CSRD is a manually adjustable diffuser. It is fitted with an adjustable volume balancing disc damper.

Model: CSRV

The CSRV is an externally controlled VAV diffuser. It contains an adjustable disc damper which is driven open and closed by a 24 V AC electric actuator. Control of the damper can be from a wall mounted controller, or from a building management system.

CSRV Features:

- Stand Alone Control.
- Fully Modulating Damper.
- Excellent Air Distribution.

The outer body of the CSRV diffuser is constructed from a single piece of pressed steel. This pressing has been specifically designed to maintain a strong ceiling effect irrespective of the flow rate. This design feature gives the diffuser the excellent air distribution performance that is required for a variable volume diffuser. The airflow performance for the CSRV diffuser is detailed on the following page.

	Damper Position 'A'										
DUCT DIA (D)	Minimum Opening	Maximum Opening									
150	10	42									
175	10	42									
200	10	42									
250	15	42									
300	15	42									
350	15	42									

Standard Set-Up/Performance Data Notes

- 1. The performance data for the CSRD and CSRV diffusers relates to two different damper positions, Minimum and Maximum (Dimension 'A'), for each size of diffuser.
- 2. CSRD and CSRV diffusers are available with neck sizes ranging from $150\,\mathrm{mm}$ up to $350\,\mathrm{mm}$ diameter.
- 3. All sizes of diffuser, by default, have a face size designed to 'lay-in' to a standard 600 mm wide "T-Rail" ceiling System (Frame Type 2).
- 4. The diffuser can be supplied suitable for surface mounting (Frame Type 1).
- 5. The Standard version has by default a 230 V AC Supply Pack (Transformer). Specify 230 V AC, or 24 V AC when ordering.

Performance Data - CSRD & CSRV

Models: CSRD & CSRV

	Inlet Static Pressure 13 Pa												
	Minimum Opening						Maximum Opening						
Nominal	FINW VP IIIIOW [III] at Vt [III/5]				Flow	Vp	Throw	(m/s)	NC at Maximum				
Duct Dia (D)	m³/s	Pa	0.25	0.5	0.75	m³/s	Pa	0.25	0.5	0.75	Opening		
150	0.016	0.6	0.6	0.4	0.3	0.033	2.8	0.9	0.6	0.4	17		
175	0.019	0.5	0.7	0.4	0.3	0.051	2.7	1.2	0.7	0.5	17		
200	0.021	0.3	0.8	0.5	0.3	0.068	2.6	1.5	0.8	0.6	17		
250	0.037	0.4	1.4	0.7	0.5	0.089	2.2	2.0	1.2	0.8	17		
300	0.044	0.3	1.4	0.8	0.6	0.117	1.9	2.3	1.3	0.9	17		
350	0.058	0.2	1.5	0.9	0.7	0.157	1.7	2.7	1.5	1.1	17		

	Inlet Static Pressure 25 Pa											
	Minimum Opening						Maximum Opening					
Nominal	FIOW VP INTOW (III) at VC (III/S)				Flow	Flow Vp Throw (m) at Vt (m/s)			(m/s)	NC at Maximum		
Duct Dia (D)	m³/s	Pa	0.25	0.5	0.75	m³/s	Pa	0.25	0.5	0.75	Opening	
150	0.024	1.4	0.9	0.5	0.4	0.047	5.5	1.2	0.8	0.6	20	
175	0.028	1.0	1.0	0.6	0.4	0.065	5.2	1.5	1.0	0.7	20	
200	0.030	0.6	1.3	0.6	0.5	0.083	4.8	1.7	1.1	0.8	20	
250	0.052	0.8	1.8	1.0	0.6	0.121	4.0	2.6	1.5	1.0	20	
300	0.061	0.5	1.9	1.1	0.7	0.160	3.6	2.7	1.8	1.2	20	
350	0.084	0.4	2.0	1.2	0.8	0.220	3.6	3.3	2.1	1.5	20	

	Inlet Static Pressure 38 Pa											
	Minimum Opening						Maximum Opening					
Nominal	FIGW VP IIIIOW (III) at Vt (III/3)				Flow	Vp	Throw	(m/s)	NC at Maximum			
Duct Dia (D)	m³/s	Pa	0.25	0.5	0.75	m³/s	Pa	0.25	0.5	0.75	Opening	
150	0.029	2.1	0.9	0.6	0.5	0.058	8.3	1.5	0.9	0.6	27	
175	0.035	1.6	1.1	0.7	0.5	0.081	7.9	1.9	1.2	0.7	27	
200	0.038	1.0	1.4	0.9	0.6	0.103	7.5	2.3	1.4	0.8	27	
250	0.065	1.5	2.0	1.2	0.8	0.148	6.1	2.9	1.8	1.3	27	
300	0.075	0.8	2.2	1.3	0.8	0.197	5.5	3.0	2.2	1.5	27	
350	0.103	0.6	2.3	1.4	1.0	0.270	5.1	3.7	2.9	2.3	27	

	Inlet Static Pressure 50 Pa												
		Mini	mum Ope	ning				NC					
Nominal Flow Vp Throw (m) at Vt (m/s)				Flow	vy Vp Throw (m) at Vt (m/s)			[m/s]	at Maximum				
Duct Dia (D)	m³/s	Pa	0.25	0.5	0.75	m³/s	Pa	0.25	0.5	0.75	Opening		
150	0.033	2.7	1.2	0.7	0.5	0.066	10.8	1.6	0.9	0.7	33		
175	0.040	2.1	1.3	0.8	0.6	0.092	10.3	2.1	1.2	0.9	33		
200	0.045	1.4	1.5	1.0	0.7	0.118	9.8	2.5	1.5	1.0	33		
250	0.074	1.5	2.2	1.4	0.8	0.169	7.9	3.2	2.0	1.4	33		
300	0.087	1.1	2.3	1.5	0.9	0.226	7.2	3.3	2.4	1.6	33		
350	0.119	0.7	2.4	1.6	1.1	0.310	7.2	3.5	2.5	1.9	33		

Performance Note

The air volume performance for pressure dependent diffusers is only valid if the pressure behind the diffuser is finely maintained.

600 x 600 Nominal Size	Approximate Weight Kg
CSRD	5.0
CSRV	5.4

CSRD & CSRV

Product Ordering Key and Suggested Specifications

Series CSRD Plaque type diffusers shall be of steel construction with a manual disc damper for volume control adjustment. The Plaque shall have horizontal retaining clips to prevent accidental removal and shall swing down for easy access to the damper.

All shall be as manufactured by Holyoake.

Series CSRV Plaque type diffusers shall be of steel construction with electric disc damper for automatic, or adjustable volume control. The CSRV Plaque shall have horizontal retaining clips to prevent accidental removal and shall swing down for easy access to actuator.

All shall be as manufactured by Holyoake.

Note

Seismic restraints will be required, but not supplied.

* Only Nominal Face Size Available.

Application Notes

- 1. Zone sizes normally range from one to ten diffusers.
- 2. Thermostat (T) may be mounted on diffuser face.

Static pressure sensing should be from a point acceptable as average zone duct pressure.

DIFFUSERS CEILING PERFORATED

CPMS	Ceiling Perforated Maximum Security	196 - 197D
CPR	Ceiling Perforated Return	186 - 191D
CPS	Ceiling Perforated Supply	186 - 191D
CPSHS	Ceiling Perforated Supply - High Secure	194 - 195D
CPSS	Ceiling Perforated Supply - Secure	192 - 193D
Ordering Key 8	& Specification	200D

- Square face, Perforated Plate Louver type.
- Round Neck, Square Neck options.
- Heavy Gauge Secure and High Secure Versions.
- Return options.

- Galvanised, Stainless Steel and Aluminium Construction and Face options.
- Removable Core and 'T' Rail Style.
- Full range of air distribution patterns.
- Adjustable multi pattern controllers.

CPS & CPR - Perforated Diffusers

Models: CPS & CPR

The Holyoake Series CPS and CPR perforated supply and return diffusers are designed for heating, cooling and ventilating, ceiling applications.

The Series CPS comprises of a perforated face plate mounted in a removable core frame, which blends suitably into many ceiling types. Concealed, adjustable pattern controllers on the rear, provide efficient airflow distribution and can be easily adjusted, by simply removing the fascia, unlocking and repositioning. Then any desired distribution pattern can be obtained, without any change in airflow, or noise levels. This simplifies ordering procedures and eliminates the need to rebalance the system. Series CPR are identical, without patterns. Minimal ceiling plenum height is required, (dependant on connecting spigot style); which is available with a varied choice of round, or square inlet sizes, see table below.

Construction

Extruded aluminium frames. Aluminium perforated face and galvanised adaptor pan.

Installation

The CPS plenum adaptor is independently supported, built in to the ceiling and then connected and sealed to the ductwork.

The Removable core system allows the preset pattern controllers to be suitably positioned and then the perforated face is simply pushed into the installed frame and clipped into place.

Features

- Aesthetically pleasing design.
- Fully adjustable concealed pattern controllers.
- Infinite range of distribution patterns.
- Compact assembly height and Removable Core frame.
- Plaster ceiling and 'T' Rail installation options.
- Circular, or square inlets in a range of sizes.

A Nominal Diffuser Size		250 x 250	350 x 350	450 x 450	550 x 550	250 x 550	550 x 850	250 x 850	250 x 1150	550 x 1150
Overall Plen	C* um Adaptor Size	300 x 300	400 x 400	500 x 500	600 x 600	300 x 600	600 x 900	300 x 900	300 x 1200	600 x 1200
	150 x 150	•	•	•	•	•	•	•	•	•
Nominal	200 x 200		•	•	•		•			•
Neck Size	250 x 250			•	•		•			•
D*	300 x 300				•		•			•
	150 x 450					•		•	•	
Nominal	125 DIA	•	•	•	•	•	•	•	•	•
Neck	150 DIA	•	•	•	•	•	•	•	•	•
Diameter	175 DIA	•	•	•	•	•	•	•	•	•
E*	200 DIA		•	•	•		•			•
	250 DIA		•	•	•		•			•
CPS &	300 DIA			•	•		•			•
CPR with	350 DIA			•	•		•			•
Adaptor	400 DIA				•		•			•

Ceiling Module and Duct Sizes*

Indicates available combination

Note

- $1. For other frame styles and module sizes and for the performance of sizes \\ not shown in the capacity tables, contact your local Holyoake branch.$
- 2. Seismic restraints are required, but not supplied.

Options

Heavy gauge galvanised perforated face, available against special order. OBD-2 — Opposed blade damper.

Finish

Standard Finish is Holyoake White, or can be powder coated to specific requirements.

Perforated Diffusers – CPS & CPR

Air Pattern Controller Adjustment Notes

- 1. Extract the Removeable Core from the CPS diffuser.
- 2. The pattern controls are mounted on the rear of the Removable Core and are now visible. Loosen stud tubing and rotate the air pattern controller to the desired flow direction. Tighten the stud tubing on the controller.
- 3. Replace the Removable Core assembly.

Versatile Air Distribution for most Applications

Throw values for above pattern will be 0.6 times the values shown in the peformance tables.

Performance Notes

- 1. Refer to Performance Data Tables on the following pages.
- 2. CPR Return Data is shown in Dark Blue shaded area at the bottom of each table
- 3. Throw values are given for terminal velocities of 0.75 and 0.25 m/s.

CPS & CPR - Performance Data

								30	U X 3UU) Modul	e Size
Duct Size		/elocity, m/s Press., Pa	1.53 2	2.04 3	2.55 4	3.06 6	3.57 8	4.08 10	5.1 16	6.12 23	7.14 31
	Tot.	Press., Pa Rate, m³/s	3 0.019	5 0.026	8 0.033	11 0.038	15 0.045	19 0.052	30 0.064	43 0.078	59 0.090
125 mm	11011	NC 4-WAY	0.3-1.2	0.6-1.5	15 0.6-1.8	20 0.6-2.1	24 0.9-2.1	28 0.9-2.4	34 1.5-2.7	39 1.8-3.1	43 1.8-3.1
RD	Throw,	3-WAY	0.3-1.2 0.3-1.5	0.6-1.8 0.6-1.8	0.6-2.1 0.6-2.4	0.6-2.4 0.9-3.1	0.9-2.7 1.2-3.1	1.2-3.1 1.2-3.7	1.5-3.1 1.8-4.0	1.8-3.7 2.1-4.3	1.8-4.0
	m	2-WAY 1-WAY	0.6-1.8	0.6-1.8	0.9-2.7	1.2-3.1	1.5-3.4	1.8-4.0	1.8-4.0	2.4-4.3	2.1-4.6 2.7-4.6
		Press., Pa Rate, m³/s	4 0.028	7 0.038	10 0.047	15 0.057	20 0.066	25 0.076	40 0.092	57 0.111	77 0.130
150 mm		NC 4-WAY	0.3-1.2	0.6-1.5	17 0.9-2.1	22 0.9-2.4	26 0.9-2.4	30 0.9-2.7	36 1.5-3.1	41 1.8-3.1	45 2.1-3.4
RD	Throw, m	3-WAY 2-WAY	0.3-1.2 0.3-1.5	0.6-1.8 0.6-2.1	0.9-2.4 0.9-2.7	0.9-2.7 0.9-3.1	0.9-3.1 1.2-3.4	1.2-3.1 1.2-3.7	1.5-3.4 1.8-4.3	1.8-4.0 2.1-4.6	2.1-4.3 2.4-5.2
		1-WAY Press., Pa	0.6-1.8 6	0.9-2.7 10	0.9-3.4 15	1.2-3.4 21	1.5-3.7 29	1.8-4.0 37	2.1-4.6 58	2.7-4.9 83	3.1-5.2 113
		Rate, m³/s	0.038	0.050 15	0.064 21	0.076 26	0.090 30	0.102 34	0.127 40	0.151 45	0.177 49
175 mm RD	Throw,	4-WAY	0.3-1.5	0.6-1.8 0.6-2.1	0.9-2.7	0.9-3.1	1.2-3.1 1.2-3.7	1.2-3.4 1.5-4.0	1.8-3.7 1.8-4.3	2.4-4.0 2.1-4.9	2.7-4.3 2.7-5.2
עט	m	3-WAY 2-WAY	0.3-1.5 0.3-1.8	0.6-2.7	0.9-3.1 0.9-3.4	0.9-3.4 1.2-3.7	1.5-4.3	1.5-4.6	2.1-5.2	2.7-5.5	3.1-6.1
	Tot.	1-WAY Press., Pa	0.6-2.4 5	0.9-3.4 8	1.2-3.7 13	1.5-3.4 19	1.8-4.3 25	2.4-4.6 33	2.7-5.2 50	3.4-5.5 73	3.7-6.1 99
	Flow	Rate, m³/s NC	0.035 -	0.047 13	0.059 19	0.071 24	0.083 28	0.094 32	0.118 38	0.142 43	0.165 47
150 x 150	Throw,	4-WAY 3-WAY	0.3-1.5 0.3-1.5	0.6-1.8 0.6-2.1	0.9-2.4 0.9-2.7	0.9-2.7 0.9-3.1	1.2-2.7 1.2-3.4	1.2-3.1 1.5-3.7	1.8-3.7 1.8-4.3	2.1-3.7 2.1-4.6	2.4-4.0 2.4-2.9
	m	2-WAY 1-WAY	0.3-1.8 0.6-2.1	0.6-2.4 0.9-3.1	0.9-3.1 1.2-3.4	1.2-3.7 1.5-3.7	1.5-4.0 1.8-4.0	1.5-4.3 2.1-4.3	2.1-5.2 2.7-5.2	2.4-5.2 3.1-5.2	2.7-5.8 3.4-5.8
		at. Press., Pa	8	13	19	28	39	50	78	113	154
250 x 250	Flow	Rate, m³/s NC	0.099 -	0.132 17	0.163 24	0.198 30	0.229 35	0.262 39	0.328 46	0.392 53	0.458 58
* perform	ance da	ta for CPR.						30	0 x 600) Modul	e Size
Duct Size		/elocity, m/s	1.53	2.04	2.55	3.06	3.57	4.08	5.1	6.12	7.14
		Press., Pa	2	3	4	6	8	10	16	23	31
		Press., Pa				10	14	18	27	39	54
		Press., Pa Rate, m³/s NC	3 0.019 -	5 0.226 -	7 0.033 14	10 0.038 19	14 0.045 23	18 0.052 27	27 0.064 33	39 0.078 38	54 0.090 42
125 mm RD		Rate, m³/s			0.033	0.038	0.045	0.052 27 0.9-2.4	0.064	0.078	0.090
	Flow	Rate, m³/s NC 4-WAY 3-WAY 2-WAY	0.019 - 0.3-1.2 0.3-1.2 0.3-1.5	0.226 - 0.6-1.5 0.6-1.8 0.6-1.8	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6
	Flow Throw, m Tot.	A-WAY 3-WAY 2-WAY 1-WAY Press., Pa	0.019 - 0.3-1.2 0.3-1.2 0.3-1.5 0.6-1.8	0.226 - 0.6-1.5 0.6-1.8 0.6-1.8 0.6-2.4	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.6
RD	Flow Throw, m Tot.	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC	0.019 - 0.3-1.2 0.3-1.2 0.3-1.5 0.6-1.8 4 0.028	0.226 - 0.6-1.5 0.6-1.8 0.6-2.4 6 0.038	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.6 65 0.130 45
	Flow Throw, m Tot.	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY	0.019 0.3-1.2 0.3-1.2 0.3-1.5 0.6-1.8 4 0.028 - 0.3-1.2 0.3-1.2	0.226 - 0.6-1.5 0.6-1.8 0.6-1.8 0.6-2.4 6 0.038 - 0.6-1.5 0.6-1.8	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.6 65 0.130 45 2.1-3.4 2.1-4.3
RD 150 mm	Throw, m Tot. Flow Throw, m	Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY	0.019 	0.226 0.6-1.5 0.6-1.8 0.6-1.8 0.6-2.4 6 0.038 - 0.6-1.5 0.6-1.8 0.6-2.1 0.9-2.7	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.4	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2
RD 150 mm	Throw, m Tot. Flow Throw, m	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY	0.019 	0.226 - 0.6-1.5 0.6-1.8 0.6-2.4 6 0.038 - 0.6-1.5 0.6-1.5 0.6-2.1 0.9-2.7 7 0.050	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-2.3 1.2-3.4 15 0.076	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2
RD 150 mm RD	Throw, m Tot. Flow Throw, m	Press., Pa 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 1-WAY Press., Pa Rate, m³/s NC	0.019 0.3-1.2 0.3-1.5 0.6-1.8 4 0.028 - 0.3-1.2 0.3-1.2 0.3-1.5 0.6-1.8 4	0.226 - 0.6-1.5 0.6-1.8 0.6-1.8 0.6-2.4 6 0.038 - 0.6-1.5 0.6-1.5 0.6-1.8 0.6-2.1 0.9-2.7	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-2.7 1.2-3.4	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7 19 0.090 29	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102 33	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.5-3.4 1.8-4.3 2.1-4.6 39 0.127 39	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2
RD 150 mm	Throw, m Tot. Flow Throw, m Tot. Flow Throw,	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 3-WAY 4-WAY 3-WAY 4-WAY 4-WAY 4-WAY 3-WAY	0.019	0.226 0.6-1.5 0.6-1.8 0.6-1.8 0.6-2.4 6 0.038 0.6-1.5 0.6-1.5 0.6-2.1 0.9-2.7 7 0.050 14 0.6-1.8 0.6-2.1	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.4 15 0.076 25 0.9-3.1 0.9-3.1	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7 19 0.090 29 1.2-3.1 1.2-3.1	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102 33	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6 39 0.127 39	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44 2.4-4.0 2.1-4.9	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2 76 0.177 48 2.7-4.3 2.7-5.2
150 mm RD 175 mm	Throw, m Tot. Flow Throw, m Tot. Flow Throw, m	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC	0.019	0.226 0.6-1.5 0.6-1.8 0.6-1.8 0.6-2.4 6 0.038 - 0.6-1.5 0.6-1.8 0.6-2.1 0.9-2.7 7 0.050 14 0.6-1.8 0.6-2.1 0.9-2.7	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4 10 0.064 20 0.9-3.1 0.9-3.4 1.2-3.7	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.4 15 0.076 25 0.9-3.1 0.9-3.1 1.2-3.7 1.5-3.4	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7 19 0.090 29 1.2-3.1 1.2-3.7 1.5-4.3 1.8-4.3	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102 33 1.2-3.4 1.5-4.0 1.5-4.6 2.4-4.6	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6 39 0.127 39 1.8-3.7 1.8-4.3 2.1-5.2 2.7-5.2	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44 2.4-4.0 2.1-4.9 2.7-5.5 3.4-5.5	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2 76 0.177 48 2.7-4.3 2.7-5.2 3.1-6.1
150 mm RD 175 mm	Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow Throw, Tot.	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 1-WAY Press., Pa Rate, m³/s	0.019 0.3-1.2 0.3-1.2 0.3-1.5 0.6-1.8 4 0.028 - 0.3-1.2 0.3-1.2 0.3-1.5 0.6-1.8 4 0.038 - 0.3-1.5 0.3-1.5	0.226 0.6-1.5 0.6-1.8 0.6-1.8 0.6-2.4 6 0.038 - 0.6-1.5 0.6-1.8 0.6-2.1 0.9-2.7 7 0.050 14 0.6-1.8 0.6-2.1 0.6-2.1 0.6-2.1 0.6-2.3 0.6-1.8	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4 10 0.064 20 0.9-2.7 0.9-3.1 0.9-3.1 1.2-3.7	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.4 15 0.076 25 0.9-3.1 0.9-3.1 1.2-3.7 1.5-3.4 18 0.071	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7 19 0.090 29 1.2-3.1 1.2-3.7 1.5-4.3 1.8-4.3	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102 33 1.2-3.4 1.5-4.0 1.5-4.0 2.4-4.6	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6 39 0.127 39 1.8-3.7 1.8-4.3 2.1-5.2 2.7-5.2	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44 2.4-4.0 2.1-4.9 2.1-4.9 3.4-5.5 69 0.142	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2 76 0.177 48 2.7-4.3 2.7-5.2 3.1-6.1 94 0.165
150 mm RD 175 mm	Throw, m Tot. Flow Throw, m Tot. Flow Throw, Flow Throw, Flow	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 1-WAY 1-WAY 1-WAY 1-WAY 1-WAY	0.019 0.3-1.2 0.3-1.5 0.6-1.8 4 0.028 0.3-1.2 0.3-1.5 0.6-1.8 4 0.038 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5	0.226 	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4 10 0.064 20 0.9-2.7 0.9-3.1 0.9-3.1 1.2-3.7 12 0.059 19	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.4 15 0.076 25 0.9-3.1 0.9-3.4 1.2-3.7 1.5-3.4 18 0.071 24 0.9-2.7	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7 19 0.090 29 1.2-3.1 1.2-3.7 1.5-4.3 1.8-4.3 24 0.083 28 1.2-2.7	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102 33 1.2-3.4 1.5-4.6 2.4-4.6 31 0.094 32 1.2-3.1	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6 39 0.127 39 1.8-3.7 1.8-4.3 2.1-5.2 2.7-5.2 48 0.118 38 1.8-3.4	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44 2.4-4.0 2.1-4.9 2.7-5.5 3.4-5.5 69 0.142 43 2.1-3.7	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2 76 0.177 48 2.7-4.3 2.7-5.2 3.1-6.1 3.7-6.1 94 0.165 47 2.4-4.0
150 mm RD 175 mm RD	Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow Throw, Tot.	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY 3-WAY 2-WAY 1-WAY 1-WAY	0.019	0.226 0.6-1.5 0.6-1.8 0.6-2.4 6 0.038 0.6-1.5 0.6-1.8 0.6-2.1 0.9-2.7 7 0.050 14 0.6-2.1 0.6-2.7 0.9-3.4 8 0.047 13 0.6-1.8 0.6-2.1	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4 10 0.064 20 0.9-3.4 1.2-3.7 12 0.059 19 0.9-2.4 0.9-2.7 0.9-3.1	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.4 15 0.076 25 0.9-3.1 0.9-3.4 1.2-3.7 1.5-3.4 18 0.071 24 0.9-2.7 0.9-3.1 1.2-3.7	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7 19 0.090 29 1.2-3.1 1.2-3.7 1.5-4.3 1.8-4.3 24 0.083 28 1.2-2.7 1.2-3.4 1.5-4.0	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102 33 1.2-3.4 1.5-4.6 2.4-4.6 31 0.094 32 1.5-3.7 1.5-3.7 1.5-4.3	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6 39 0.127 39 1.8-3.7 1.8-4.3 2.1-5.2 2.7-5.2 48 0.118 38 1.8-4.0 2.1-4.0 2.1-4.0	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44 2.4-4.0 2.1-4.9 2.7-5.5 3.4-5.5 69 0.142 43 2.1-3.7 2.1-4.6 2.4-5.2	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2 76 0.177 48 2.7-4.3 2.7-5.2 3.1-6.1 3.7-6.1 94 0.165 47 2.4-4.0 2.4-4.9 2.7-5.8
150 mm RD 175 mm RD	Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY 3-WAY 2-WAY 1-WAY 3-WAY 2-WAY 3-WAY 2-WAY 3-WAY 3-WAY 2-WAY 3-WAY 3-WAY 2-WAY 3-W	0.019 0.3-1.2 0.3-1.5 0.6-1.8 4 0.028 0.3-1.2 0.3-1.5 0.6-1.8 4 0.038 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5 0.3-1.5	0.226 0.6-1.5 0.6-1.8 0.6-1.8 0.6-2.4 6 0.038 	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4 10 0.064 20 0.9-3.1 0.9-3.4 1.2-3.7 12 0.9-2.4 0.9-2.7	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.4 15 0.076 25 0.9-3.1 1.2-3.7 1.5-3.4 18 0.071 24 0.9-2.7 0.9-3.1 1.2-3.7 1.5-3.4	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7 19 0.090 29 1.2-3.1 1.2-3.2 1.5-4.3 1.8-4.3 24 0.083 28 1.2-2.7 1.2-3.4	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102 33 1.2-3.4 1.5-4.6 2.4-4.6 31 0.094 32 1.2-3.1 1.5-3.7	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6 39 0.127 39 1.8-3.7 1.8-4.3 2.1-5.2 2.7-5.2 48 0.118 38 1.8-3.4 1.8-3.4 1.8-3.4	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44 2.4-4.0 2.1-4.9 2.7-5.5 3.4-5.5 69 0.142 43 2.1-3.7 2.1-4.6	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2 76 0.177 48 2.7-4.3 2.7-5.2 3.1-6.1 3.7-6.1 94 0.165 47 2.4-4.0 2.4-4.9
150 mm RD 175 mm RD	Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow Tot. Tot. Tot. Tot.	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY 2-WAY 1-WAY 1-WAY	0.019	0.226 0.6-1.5 0.6-1.8 0.6-1.8 0.6-2.4 6 0.038 - 0.6-1.5 0.6-1.8 0.6-2.1 0.9-2.7 7 0.050 14 0.6-2.1 0.6-2.7 0.9-3.4 8 0.047 13 0.6-1.8 0.6-2.1 10-2.7 0.9-3.4	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4 1.2-3.7 12 0.059 19 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.7	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.4 15 0.076 25 0.9-3.1 0.9-3.4 1.2-3.7 1.5-3.4 18 0.071 24 0.9-2.7 0.9-3.1 1.2-3.7 1.5-3.4	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7 19 0.090 29 1.2-3.1 1.2-3.7 1.5-4.3 1.8-4.3 24 0.083 28 1.2-2.7 1.2-3.4 1.5-4.0 1.8-4.0	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102 33 1.2-3.4 1.5-4.6 2.4-4.6 31 0.094 32 1.5-3.7 1.5-3.7 1.5-4.3 2.1-4.3	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6 39 0.127 39 1.8-3.7 1.8-4.3 2.1-5.2 2.7-5.2 48 0.118 38 1.8-4.0 2.1-4.9 2.4-4.9	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44 2.4-4.0 2.1-4.9 2.7-5.5 3.4-5.5 69 0.142 43 2.1-3.7 2.1-4.6 2.4-4.0 2.1-4.9	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2 76 0.177 48 2.7-4.3 2.7-5.2 3.1-6.1 3.7-6.1 94 0.165 47 2.4-4.0 2.4-4.9 2.7-5.8 3.4-5.8
150 mm RD 175 mm RD	Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow Tot. Tot. Tot. Tot.	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 1-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 1-WAY	0.019	0.226	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4 10 0.064 20 0.9-2.7 12 0.9-3.1 1.2-3.7 12 0.9-2.4 0.9-2.7 12 0.9-3.4 1.2-3.7	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.4 15 0.076 25 0.9-3.1 0.9-3.4 1.2-3.7 1.5-3.4 18 0.071 24 0.9-2.7 0.9-3.1 1.2-3.7 1.5-3.4 18 0.071 24 0.9-2.7 0.9-3.1 1.2-3.7	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7 19 0.090 29 1.2-3.1 1.2-3.7 1.5-4.3 1.8-4.3 24 0.083 28 1.2-2.7 1.2-3.4 1.5-4.0 1.8-4.0 53 0.248 40 3.4-6.7	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102 33 1.2-3.4 1.5-4.6 2.4-4.6 31 0.094 32 1.2-3.1 1.5-3.7 1.5-4.3 2.1-4.3 69 0.282 44	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6 39 0.127 39 1.8-3.7 1.8-4.3 2.1-5.2 2.7-5.2 48 0.118 38 1.8-3.4 1.8-4.0 2.1-4.9 2.4-4.9 108 0.354 50 4.9-8.2	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44 2.4-4.0 2.1-4.9 2.7-5.5 3.4-5.5 69 0.142 43 2.1-3.7 2.1-4.6 2.4-5.2 3.1-5.2	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2 76 0.177 48 2.7-5.2 3.1-6.1 3.7-6.1 94 0.165 47 2.4-4.9 2.7-5.8 3.4-5.8 210 0.496 59 5.8-9.8
150 mm RD 175 mm RD 150 x 150	Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY	0.019	0.226 0.6-1.5 0.6-1.8 0.6-1.8 0.6-2.4 6 0.038 0.6-1.5 0.6-1.8 0.6-2.1 0.9-2.7 7 0.050 14 0.6-1.8 0.6-2.1 0.6-2.1 0.6-2.1 0.6-2.1 1.3 0.6-1.8 0.6-2.1 0.9-3.1 17 0.142 25 1.8-5.2 2.1-5.2	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4 10 0.064 20 0.9-2.7 0.9-3.1 10-3.4 1.2-3.7 12 0.059 19 0.9-2.4 0.9-2.7 19-3.4 1.2-3.7 12 12-3.4 28 0.177 31 2.4-5.8 2.4-5.8 2.7-5.8	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.4 15 0.076 25 0.9-3.1 0.9-3.4 1.2-3.7 1.5-3.4 18 0.071 24 0.9-2.7 0.9-3.1 1.2-3.7 1.5-3.4 3.1-6.4 3.1-6.4 3.1-6.4 3.1-6.4 3.1-6.4	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7 19 0.090 29 1.2-3.1 1.2-3.7 1.5-4.3 1.8-4.3 24 0.083 28 1.2-2.7 1.2-3.4 1.5-4.0 1.8-4.0 53 0.248 40 3.4-6.7 3.7-6.7 4.0-6.7	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102 33 1.2-3.4 1.5-4.0 1.5-4.6 2.4-4.6 31 0.094 32 1.2-3.1 1.5-3.7 1.5-4.3 2.1-4.3	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6 39 0.127 39 1.8-3.7 1.8-4.3 2.1-4.5 2.7-5.2 48 0.118 38 1.8-3.4 1.8-4.0 2.1-4.9 1.8-4.9 1.8-4.9	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44 2.4-4.0 2.1-4.9 2.7-5.5 3.4-5.5 69 0.142 43 2.1-3.7 2.1-4.6 2.4-5.2 3.1-5.2 153 0.4225 55 5.2-9.2 5.2-9.2 5.2-9.2	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2 76 0.177 48 2.7-4.3 2.7-5.2 3.1-6.1 94 0.165 47 2.4-4.0 2.4-4.9 2.7-5.8 3.4-5.8 2.7-5.8 3.4-5.9 3.4-5.8
150 mm RD 175 mm RD 150 x 150	Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Tot. Flow Throw, m Neg St	Rate, m³/s NC 4-WAY 3-WAY 2-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 3-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 1-WAY Press., Pa Rate, m³/s NC 4-WAY 1-WAY	0.019	0.226	0.033 14 0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7 9 0.047 17 0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4 10 0.064 20 0.9-2.7 12 0.9-3.1 1.2-3.7 12 0.059 19 0.9-2.4 0.9-2.7 12 12-3.7 12 12-3.7 12 12-3.7 12 12-3.7 13-3.4 14-3.7 15-3.4 16-3.4 17 18-3.4 18-3.7 18-3.7 18	0.038 19 0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1 12 0.057 22 0.9-2.4 0.9-2.7 0.9-3.1 1.2-3.4 15 0.076 25 0.9-3.1 0.9-3.4 1.2-3.7 1.5-3.4 18 0.071 24 0.9-2.7 0.9-3.1 1.2-3.7 1.5-3.4 18 0.071 24 0.9-2.7 0.9-3.1 1.2-3.7 1.5-3.4	0.045 23 0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4 17 0.066 26 0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7 19 0.090 29 1.2-3.1 1.2-3.7 1.2-3.7 1.2-3.7 1.2-3.7 1.2-3.4 1.5-4.3 1.8-4.3 24 0.083 28 1.2-2.7 1.2-3.4 1.5-4.0 53 0.248 40 3.4-6.7 3.7-6.7	0.052 27 0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0 21 0.076 30 0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0 25 0.102 33 1.2-3.4 1.5-4.6 2.4-4.6 31 0.094 32 1.2-3.1 1.5-3.7 1.5-4.3 2.1-4.3	0.064 33 1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0 33 0.092 36 1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6 39 0.127 39 1.8-3.7 1.8-4.3 2.1-5.2 2.7-5.2 48 0.118 38 1.8-4.0 2.1-4.9 2.4-4.9 1.08 0.354 50 4.9-8.2 4.9-8.2	0.078 38 1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3 48 0.111 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44 2.4-4.0 2.1-4.9 2.7-5.5 3.4-5.5 69 0.142 43 2.1-3.7 2.1-4.6 2.4-5.2 3.1-5.2 153 0.425 55 5.2-9.2	0.090 42 1.8-3.1 1.8-4.0 2.1-4.6 65 0.130 45 2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2 76 0.177 48 2.7-4.3 2.7-5.2 3.1-6.1 3.7-6.1 94 0.165 47 2.4-4.0 2.4-4.9 2.7-5.8 3.4-5.8 2.10 0.496 59 5.8-9.8 5.8-9.8

Performance Data – CPS & CPR

400 x 400 Module Size

Duct Size		Velocity, m/s	1.53	2.04	2.55	3.06	3.57	4.08	5.1	6.12	7.14
Duct Size	Vel.	Press., Pa	2	3	4	6	8	10	16	23	31
		Press., Pa				10	14	18	28	40	54
	Flow	Rate, m³/s	0.019	0.026	0.033	0.038	0.045	0.052	0.064	0.078	0.090
		NC	-	-	14	19	23	27	33	38	42
125 mm	т.	4-WAY	0.3-1.2	0.6-1.5	0.6-1.8	0.6-2.1	0.9-2.1	0.9-2.4	1.5-2.7	1.8-3.1	1.8-3.1
RD	Throw,	3-WAY	0.3-1.2	0.6-1.8	0.6-2.1	0.6-2.4	0.9-2.7	1.2-3.1	1.5-3.1	÷	1.8-4.0
	m	2-WAY	0.3-1.5	0.6-1.8	0.6-2.4	0.9-3.1	1.2-3.1	1.2-3.7	1.8-4.0		2.1-4.6
		1-WAY	0.6-1.8	0.6-2.4	0.9-2.7	1.2-3.1	1.5-3.4	1.8-4.0	1.8-4.0		2.7-4.6
		Press., Pa				12	17	21	33		65
	Flow	Rate, m³/s	0.028	0.038	0.047	0.057	0.066	0.076	0.094		0.130
450		NC	0.0.1.0		17	22	26	30	36		45
150 mm	Throw,	4-WAY	0.3-1.2	0.6-1.5	0.9-2.1	0.9-2.4	0.9-2.4	0.9-2.7	1.5-3.1	÷ .	2.1-3.4
RD	·	3-WAY	0.3-1.2	0.6-1.8	0.9-2.4	0.9-2.7	0.9-3.1	1.2-3.1	1.5-3.4	2	2.1-4.3
	m	2-WAY	0.3-1.5	0.6-2.1	0.9-2.7	0.9-3.1	1.2-3.4	1.2-3.7	1.8-4.3		2.4-5.2
	-	1-WAY	0.6-1.8	0.9-2.7	0.9-3.4	1.2-3.4	1.5-3.7	1.8-4.0	2.1-4.6		3.1-5.2
		Press., Pa	4 0.038	7 0.050	10 0.064	15 0.076	19 0.090	25 0.102	39 0.127		76 0.177
175 mm	Flow	Rate, m³/s NC	0.038	0.050 14	20	25	29	33	39		48
RD		4-WAY	0.3-1.5	0.6-1.8	0.9-2.7	0.9-3.1	1.2-3.1	1.2-3.4	1.8-3.7		2.7-4.3
or	Throw,	3-WAY	0.3-1.5	0.6-1.6	0.9-2.7	0.9-3.1	1.2-3.1	1.5-4.0	1.8-4.3	÷ .	2.7-4.3
150 x 150	Í	2-WAY	0.3-1.3	0.6-2.7	0.9-3.4	1.2-3.I	1.5-4.3	1.5-4.6	2.1-5.2		3.1-6.1
130 X 130	m	1-WAY	0.6-2.4	0.9-3.4	1.2-3.7	1.5-4.0	1.8-4.3	2.4-4.6	2.7-5.2		3.7-6.1
	Tot	Press., Pa	5	7	12	17	22	29	45		88
		Rate, m ³ /s	0.050	0.066	0.083	0.099	0.116	0.132	0.165		0.231
	1 10 11	NC	-	16	22	27	31	35	41		50
200 mm		4-WAY	0.3-1.8	0.6-2.4	1.2-3.1	1.2-3.4	1.2-3.7	1.5-3.7	1.8-4.0		2.7-4.9
RD	Throw,	3-WAY	0.3-1.8	0.6-2.4	1.2-3.4	1.2-4.0	1.5-4.0	1.5-4.3	2.1-4.9		3.1-5.8
	m	2-WAY	0.3-2.1	0.6-3.1	1.2-3.7	1.2-4.3	1.5-4.6	1.8-5.2	2.4-5.8	3.1-6.4	3.7-6.7
		1-WAY	0.9-2.7	1.2-3.7	1.5-4.0	1.8-4.3	2.1-4.6	2.4-5.2	3.1-5.8	4.0-6.4	4.0-6.7
	Tot.	Press., Pa	6	10	16	23	30	39	61	87	119
		Rate, m³/s	0.078	0.104	0.127	0.153	0.179	0.205	0.257	0.309	0.359
		NC	11	19	25	30	34	38	44	49	53
250 mm		4-WAY	0.3-2.4	0.6-3.1	1.2-3.7	1.2-4.0	1.8-4.3	2.1-4.3	2.4-5.2	3.1-5.5	3.4-6.1
RD	Throw,	3-WAY	0.3-2.4	0.6-3.1	1.2-4.0	1.8-4.6	2.1-5.2	2.1-5.5	2.7-6.1	3.4-6.7	3.7-7.0
	m	2-WAY	0.3-2.7	0.6-3.7	1.2-4.3	1.8-5.5	2.1-5.8	2.4-6.4	3.1-7.0		4.3-8.5
		1-WAY	0.3-3.4	1.2-4.3	2.1-5.2	2.4-5.5	2.7-5.8	3.1-6.4	3.7-7.0	4.6-7.6	4.6-8.5
		Press., Pa			14	20	27	34	54	76	104
	Flow	Rate, m³/s	0.064	0.085	0.104	0.125	0.146	0.168	0.210		0.295
200 200		NC	9	17	23	28	32	36	42		51
200 x 200	Thrau	4-WAY	0.3-2.1	0.6-2.7	1.2-3.4	1.2-3.7	1.5-4.0	1.8-4.0	2.1-4.6	÷	3.1-5.5
	Throw,	3-WAY	0.3-2.1	0.6-2.7	1.2-3.7	1.5-4.3	1.8-4.6	1.8-4.9	2.4-5.5	÷	3.4-6.4
	m	2-WAY	0.3-2.4	0.6-3.4	1.2-4.0	1.5-4.9	1.8-5.2	2.1-5.8	2.7-6.4		4.0-7.6
	N. O.	1-WAY	0.9-3.1	1.2-4.0	1.8-4.6	2.1-4.9	2.4-5.2	2.7-5.8	3.4-6.4		4.3-7.6
250 050		at. Press., Pa	8	13	19	28	39	50	78		154
350 x 350	Flow	Rate, m³/s	0.194	0.257	0.321	0.385	0.449	0.515	0.642	1	0.897
		NC		18	25	31	36	40	47	1.8-3.7 2.1-4.3 2.4-4.3 48 0.110 41 1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9 56 0.151 44 2.4-4.0 2.1-4.9 2.7-5.5 3.4-5.5 64 0.198 46 2.4-4.3 2.7-5.5 3.1-6.4 4.0-6.4 87 0.309 49 3.1-5.5 3.4-6.7 3.7-7.6 4.6-7.6 76 0.253 47 2.7-4.9 3.1-6.1 3.4-7.0	59

* performance data for CPR.

	Guide Product Weights										
Approximate Weight in Kg.											
Size	CPR	CPS									
300 x 300	1.35	1.75									
600 x 600	1.98	2.38									

CPS & CPR - Performance Data

								50	0 x 50C	Modul	e Size
Duct Size		/elocity, m/s Press., Pa	1.53 2	2.04 3	2.55 4	3.06 6	3.57 8	4.08 10	5.1 16	6.12 23	7.14 31
		Press., Pa Rate, m³/s NC	3 0.019 -	5 0.026 -	7 0.033 14	10 0.038 19	14 0.045 23	18 0.052 27	28 0.064 33	40 0.078 38	54 0.090 42
125 mm RD	Throw, m	4-WAY 3-WAY 2-WAY 1-WAY	0.3-1.2 0.3-1.2 0.3-1.5 0.6-1.8	0.6-1.5 0.6-1.8 0.6-1.8 0.6-2.4	0.6-1.8 0.6-2.1 0.6-2.4 0.9-2.7	0.6-2.1 0.6-2.4 0.9-3.1 1.2-3.1	0.9-2.1 0.9-2.7 1.2-3.1 1.5-3.4	0.9-2.4 1.2-3.1 1.2-3.7 1.8-4.0	1.5-2.7 1.5-3.1 1.8-4.0 1.8-4.0	1.8-3.1 1.8-3.7 2.1-4.3 2.4-4.3	1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.6
		Press., Pa Rate, m³/s NC	4 0.028	6 0.038	9 0.047 17	12 0.057 22	17 0.066 26	21 0.076 30	33 0.094 36	48 0.110 41	65 0.130 45
150 mm RD	Throw, m	4-WAY 3-WAY 2-WAY 1-WAY	0.3-1.2 0.3-1.2 0.3-1.5 0.6-1.8	0.6-1.5 0.6-1.8 0.6-2.1 0.9-2.7	0.9-2.1 0.9-2.4 0.9-2.7 0.9-3.4	0.9-2.4 0.9-2.7 0.9-3.1 1.4-3.4	0.9-2.4 0.9-3.1 1.2-3.4 1.5-3.7	0.9-2.7 1.2-3.1 1.2-3.7 1.8-4.0	1.5-3.1 1.5-3.4 1.8-4.3 2.1-4.6	1.8-3.1 1.8-4.0 2.1-4.6 2.7-4.9	2.1-3.4 2.1-4.3 2.4-5.2 3.1-5.2
175 mm		Press., Pa Rate, m³/s NC	4 0.038	7 0.050 13	10 0.064 19	14 0.076 24	18 0.090 28	23 0.102 32	37 0.127 38	52 0.151 43	71 0.177 47
RD or 150 x 150	Throw, m	4-WAY 3-WAY 2-WAY 1-WAY	0.3-1.5 0.3-1.5 0.3-1.8 0.6-2.4	0.6-1.8 0.6-2.1 0.6-2.7 0.9-3.4	0.9-2.7 0.9-3.1 0.9-3.4 1.2-3.7	0.9-3.1 0.9-3.4 1.2-3.7 1.5-4.0	1.2-3.1 1.2-3.7 1.5-4.3 1.8-4.3	1.2-3.4 1.5-4.0 1.5-4.6 2.4-4.6	1.8-3.7 1.8-4.3 2.1-5.2 2.7-5.2	2.4-4.0 2.1-4.9 2.7-5.5 3.4-5.5	2.7-4.3 2.7-5.2 3.1-6.1 3.7-6.1
		Press., Pa Rate, m³/s NC	4 0.050	6 0.066 16	10 0.083 22	14 0.099 27	19 0.116 31	24 0.132 35	38 0.165 41	54 0.198 46	74 0.231 50
200 mm RD	Throw, m	4-WAY 3-WAY 2-WAY 1-WAY	0.3-1.8 0.3-1.8 0.3-2.1 0.9-2.7	0.6-2.4 0.6-2.4 0.6-3.1 1.2-3.7	1.2-3.1 1.2-3.4 1.2-3.7 1.5-4.0	1.2-3.4 1.2-4.0 1.2-4.3 1.8-4.3	1.2-3.7 1.5-4.0 1.5-4.6 2.1-4.6	1.5-3.7 1.5-4.3 1.8-5.2 2.4-5.2	1.8-4.0 2.1-4.9 2.4-5.8 3.1-5.8	2.4-4.3 2.7-5.5 3.1-6.4 4.0-6.4	2.7-4.9 3.1-5.8 3.7-6.7 4.0-6.7
250 mm		Press., Pa Rate, m³/s NC	5 0.078 11	8 0.104 19	13 0.127 25	18 0.153 30	24 0.179 34	31 0.205 38	49 0.257 44	70 0.309 49	95 0.359 53
RD or 200 x 200	Throw, m	4-WAY 3-WAY 2-WAY 1-WAY	0.3-2.4 0.3-2.4 0.3-2.7 0.9-3.4	0.6-3.1 0.6-3.1 0.6-3.7 1.2-4.3	1.2-3.7 1.2-4.0 1.2-4.3 1.2-5.2	1.2-4.0 1.8-4.6 1.8-5.5 2.4-5.5	1.8-4.3 2.1-5.2 2.1-5.8 2.7-5.8	2.1-4.3 2.1-5.5 2.4-6.4 3.1-6.4	2.4-5.2 2.7-6.1 3.1-7.0 3.7-7.0	3.1-5.5 3.4-6.7 3.7-7.6 4.6-7.6	3.4-6.1 3.7-7.0 4.3-8.5 4.6-8.5
		Press., Pa Rate, m³/s NC	6 0.111 14	10 0.149 22	15 0.184 28	22 0.222 33	30 0.260 37	38 0.297 41	60 0.371 47	85 0.446 52	116 0.516 56
300 mm RD	Throw, m	4-WAY 3-WAY 2-WAY 1-WAY	0.6-2.1 0.6-3.1 0.6-3.4 0.9-4.3	0.9-3.7 0.9-4.0 0.9-4.6 1.5-5.5	1.5-4.3 1.5-4.9 1.5-5.5 2.1-6.1	1.5-4.9 1.8-5.5 2.1-6.1 2.4-6.4	1.8-5.2 2.1-6.1 2.4-7.0 3.4-7.0	2.1-5.5 2.4-6.4 2.7-7.6 3.4-7.6	2.7-6.1 3.4-7.0 3.7-8.5 4.6-8.5	3.7-6.4 4.0-8.2 4.6-9.5 5.5-9.5	4.3-7.0 4.6-8.5 5.2-10.1 9.5-10.1
		Press., Pa Rate, m³/s NC	8 0.151 19	13 0.201 27	20 0.250 38	29 0.300 38	38 0.349 42	49 0.401 46	77 0.500 52	110 0.600 57	151 0.699 61
350 mm RD	Throw, m	4-WAY 3-WAY 2-WAY 1-WAY	0.6-3.1 0.6-3.4 0.9-3.7 1.2-4.9	1.2-4.0 1.2-4.3 1.2-5.2 1.8-6.1	1.8-4.9 1.8-5.5 1.8-6.1 2.4-7.0	1.8-5.5 2.1-6.1 2.4-7.0 3.1-7.3	2.1-5.8 2.4-7.0 3.1-7.9 3.7-7.9	2.4-6.1 3.1-7.3 3.4-8.8 4.0-8.8	3.4-7.0 3.7-7.9 4.0-9.5 5.2-9.5	4.0-7.3 4.3-9.2 5.2-10.7 6.1-10.7	4.9-7.9 5.2-9.5 5.8-11.3 6.7-11.3
		Press., Pa Rate, m³/s NC	6 0.099 13	9 0.132 21	15 0.165 27	21 0.196 32	28 0.229 36	36 0.262 40	56 0.328 46	80 0.394 51	109 0.460 55
250 x 250	Throw, m	4-WAY 3-WAY 2-WAY 1-WAY	0.6-2.4 0.6-2.7 0.6-3.1 0.9-4.0	0.9-3.4 0.9-3.7 0.9-4.3 1.5-5.2	1.5-4.0 1.5-4.6 1.5-5.2 2.1-6.8	1.5-4.6 1.8-5.2 2.1-5.8 2.4-6.1	1.8-4.9 2.1-5.8 2.4-6.7 3.1-6.7	2.1-5.2 2.4-6.1 2.7-7.3 3.4-7.3	2.7-5.8 3.1-6.7 3.4-7.9 4.3-7.9	3.4-6.1 3.7-7.6 4.3-8.8 5.2-8.8	4.0-6.7 4.3-7.9 4.9-9.5 5.5-9.5
450 x 450		at. Press., Pa Rate, m³/s NC	8 0.319 10	13 0.425 19	19 0.529 26	28 0.637 32	39 0.746 37	50 0.850 41	78 1.060 48	113 1.270 55	154 1.490 60

^{*} performance data for CPR.

Performance Data – CPS & CPR

600 x 600 Module Size

Duct Cinc	Neck \	Velocity, m/s	1.53	2.04	2.55	3.06	3.57	4.08	5.1	6.12	7.14
Duct Size		. Press., Pa	2	3	4	6	8	10	16	23	31
		Press., Pa	3	5	7	10	14	18	28	40	54
		Rate, m ³ /s	0.019	0.026	0.033	0.038	0.045	0.052	0.064	0.078	0.090
		NC			14	19	23	27	33	38	42
125 mm		4-WAY	0.3-1.2	0.6-1.5	0.6-1.8	0.6-2.1	0.9-2.1	0.9-2.4	1.5-2.7	1.8-3.1	1.8-3.1
RD	Throw,	3-WAY	0.3-1.2	0.6-1.8	0.6-2.1	0.6-2.4	0.9-2.7	1.2-3.1	1.5-3.1	1.8-3.7	1.8-4.0
IND.		2-WAY	0.3-1.5	0.6-1.8	0.6-2.4	0.9-3.1	1.2-3.1	1.2-3.7	1.8-4.0	2.1-4.3	2.1-4.6
	m	1-WAY	0.6-1.8	0.6-2.4	0.9-2.7	1.2-3.1	1.5-3.4	1.8-4.0	1.8-4.0	2.4-4.3	2.7-4.6
	Tot	Press., Pa	4	6	9	12	1.5 5.4	21	33	48	65
		Rate, m³/s	0.028	0.038	0.047	0.057	0.066	0.076	0.094	0.110	0.130
	FIUW	NC	0.020		17	22	26	30	36	41	45
150 mm		4-WAY	0.3-1.2	0.6-1.5	0.9-2.1	0.9-2.4	0.9-2.4	0.9-2.7	1.5-3.1	1.8-3.1	2.1-3.4
RD	Throw,	3-WAY	0.3-1.2	0.6-1.8	0.9-2.1	0.9-2.7	0.9-3.1	1.2-3.1	1.5-3.1	1.8-4.0	2.1-3.4
טוו	•	2-WAY	0.3-1.2	0.6-2.1	0.9-2.7	0.9-2.7	1.2-3.4	1.2-3.7	1.8-4.3	2.1-4.6	2.4-5.2
	m	1-WAY	0.6-1.8	0.9-2.7	0.9-3.4	1.2-3.4	1.5-3.7	1.8-4.0	2.1-4.6	2.7-4.9	3.1-5.2
	Total					1					
		Press., Pa	4	6	10	14 0.076	18	23	37 0.127	52 0.151	71 0.177
175	FIOW	Rate, m³/s	0.038	0.050	0.064		0.090	0.102			
175 mm		NC	0.24.5	13	19	24	28	32	38	43	47
RD	Throw,	4-WAY	0.3-1.5	0.6-1.8	0.9-2.7	0.9-3.1	1.2-3.1	1.2-3.4	1.8-3.7	2.4-4.0	2.7-4.3
0r 150 v 150		3-WAY	0.3-1.5	0.6-2.1	0.9-3.1	0.9-3.4	1.2-3.7	1.5-4.0	1.8-4.3	2.1-4.9	2.7-5.2
150 x 150	m	2-WAY	0.3-1.8	0.6-2.7	0.9-3.4	1.2-3.7	1.5-4.3	1.5-4.6	2.1-5.2	2.7-5.5	3.1-6.1
		1-WAY	0.6-2.4	0.9-3.4	1.2-3.7	1.5-4.0	1.8-4.3	2.4-4.6	2.7-5.2	3.4-5.5	3.7-6.1
		Press., Pa	4	6	10	14	19	24	38	54	74
	Flow	Rate, m³/s	0.050	0.066	0.083	0.099	0.116	0.132	0.165	0.198	0.231
200		NC	0.2.4.0	17	23	28	32	36	42	47	51
200 mm	Thuair	4-WAY	0.3-1.8	0.6-2.4	1.2-3.1	1.2-3.4	1.2-3.7	1.5-3.7	1.8-4.0	2.4-4.3	2.7-4.9
RD	Throw,	3-WAY	0.3-1.8	0.6-2.4	1.2-3.4	1.2-4.0	1.5-4.0	1.5-4.3	2.1-4.9	2.7-5.5	3.1-5.8
	m	2-WAY	0.3-2.1	0.6-3.1	1.2-3.7	1.2-4.3	1.5-4.6	1.8-5.2	2.4-5.8	3.1-6.4	3.7-6.7
		1-WAY	0.9-2.7	1.2-3.7	1.5-4.0	1.8-4.3	2.1-4.6	2.4-5.2	3.1-5.8	4.0-6.4	4.0-6.7
		Press., Pa			11	16	21	28	43	61	83
	Flow	Rate, m³/s	0.078	0.104	0.127	0.153	0.179	0.205	0.257	0.309	0.359
250 mm		NC	11	19	25	30	34	38	44	49	53
RD		4-WAY	0.3-2.4	0.6-3.1	1.2-3.7	1.2-4.0	1.8-4.3	2.1-4.3	2.4-5.2	3.1-5.5	3.4-6.1
or	Throw,	3-WAY	0.3-2.4	0.6-3.1	1.2-4.0	1.8-4.6	2.1-5.2	2.1-5.5	2.7-6.1	3.4-6.7	3.7-7.0
200 x 200	m	2-WAY	0.3-2.7	0.6-3.7	1.2-4.3	1.8-5.5	2.1-5.8	2.4-6.4	3.1-7.0	3.7-7.6	4.3-8.5
		1-WAY	0.3-3.4	1.2-4.3	2.1-5.2	2.4-5.5	2.7-5.8	3.1-6.4	3.7-7.0	4.6-7.6	4.6-8.5
		Press., Pa			14	19	26	33	52	75	102
	Flow	Rate, m³/s	0.111	0.149	0.184	0.222	0.260	0.297	0.371	0.446	0.519
300 mm		NC	14	22	28	33	37	41	47	52	56
RD		4-WAY	0.6-2.4	0.9-3.7	1.5-4.3	1.5-4.9	1.8-5.2	2.1-5.5	2.7-6.1	3.7-6.4	4.3-7.0
or	Throw,	3-WAY	0.6-3.1	0.9-4.0	1.5-4.9	1.8-5.5	2.1-6.1	2.4-6.4	3.4-7.0	4.0-8.2	4.6-8.5
250 x 250	m	2-WAY	0.6-3.4	0.9-4.6	1.5-5.5	2.1-6.1	2.4-7.0	2.7-7.6	3.7-8.5	4.6-9.5	5.2-10.1
		1-WAY	0.9-4.3	1.5-5.5	2.1-6.1	2.4-6.4	3.4-7.0	3.4-7.6	4.6-8.5	5.5-9.5	9.5-10.1
		Press., Pa		10	16	22	28		61	86	118
	Flow	Rate, m³/s	0.151	0.201	0.250	0.300	0.349	0.401	0.500	0.600	0.699
-		NC	16	24	30	35	39	43	49	54	58
350 mm	т.	4-WAY	0.6-3.1	1.2-4.0	1.8-4.9	1.8-5.5	2.1-5.8	2.4-6.1	3.4-7.0	4.0-7.3	4.9-7.9
RD	Throw,	3-WAY	0.6-3.4	1.2-4.3	1.8-5.5	2.1-6.1	2.4-7.0	3.1-7.3	3.7-7.9	4.3-9.2	5.2-9.5
	m	2-WAY	0.9-3.7	1.2-5.2	1.8-6.1	2.4-7.0	3.1-7.9	3.4-8.8	4.0-9.5	5.2-10.7	5.8-11.3
		1-WAY	1.2-4.9	1.8-6.1	2.4-7.0	3.1-7.3	3.7-7.9	4.0-8.8	5.2-9.5	6.1-10.7	6.7-11.3
		Press., Pa		12	19	28	37	48	75	108	147
	Flow	Rate, m³/s	0.198	0.264	0.331	0.397	0.463	0.529	0.661	0.793	0.924
		NC	19	27	33	38	42	46	52	57	58
400 mm		4-WAY	0.6-3.7	1.5-4.6	1.8-5.8	2.4-6.1	2.7-6.4	3.4-7.3	4.0-7.9	4.6-8.5	5.5-9.5
RD	Throw,	3-WAY	0.9-3.7	1.5-5.2	1.8-6.1	2.4-7.6	2.7-7.9	3.4-8.5	4.3-9.8	5.2-10.4	5.8-11.6
	m	2-WAY	1.2-4.3	1.5-5.8	1.8-7.3	2.7-8.5	3.4-9.5	4.0-10.1	4.6-11.3	5.8-12.2	6.4-13.4
		1-WAY	1.5-5.5	2.4-7.3	2.7-7.9	3.4-8.5	4.0-9.5	4.6-10.1	5.8-11.3	7.3-12.2	7.6-13.4
		. Press., Pa		10	15	21	29	37	58	83	113
	Flow	Rate, m³/s	0.142	0.189	0.236	0.283	0.331	0.378	0.472	0.567	0.661
		NC	16	24	30	35	39	43	49	54	58
300 x 300		4-WAY	0.6-3.1	1.2-4.0	1.5-4.9	2.1-5.2	2.4-5.5	2.7-6.1	3.4-6.7	4.0-7.3	4.6-7.9
	Throw,	3-WAY	0.6-3.1	1.2-4.3	1.5-5.2	2.1-6.4	2.4-6.7	2.7-7.3	3.7-8.2	4.3-8.8	4.9-9.8
	m	2-WAY	0.6-3.7	1.2-4.9	1.5-6.1	2.4-7.3	2.7-7.9	3.4-8.5	4.0-9.5	4.9-10.4	5.5-11.3
		1-WAY	1.2-4.6	2.1-6.1	2.4-6.7	3.1-7.3	3.4-7.9	4.0-8.5	4.9-9.5	6.1-10.4	6.4-11.3
	Neg St	at. Press., Pa	8	13	19	28	39	50	78	113	154
550 x 550	Flov	v Rate, m³/s	0.472	0.637	0.793	0.954	1.100	1.270	1.590	1.900	2.220
		NC	11	20	27	33	38	42	49	56	61

^{*} performance data for CPR.

CPSS – Perforated Secure Diffuser

Model: CPSS

The Holyoake Series CPSS range of Perforated Supply Secure Diffusers has been designed to provide a medium to high level of security. The CPSS is constructed of heavy gauge perforated plate, framed by a heavy section aluminium surround. The perforated diffusion plate is locked in place by solid heavy aluminium spacers.

The CPSS can be used as a ceiling, or wall mounted diffuser, or as a return if required.

The small perforation size and heavy gauge material, make it ideal for use In locations where security and safety is a requirement.

Construction

The Series CPSS comprises of a 2, or 3 mm thick perforated steel face plate mounted in a 4 mm thick aluminium surround, with mitred and welded corners.

A 40×6 mm centre support bar is added to diffusers with a 300 mm nominal neck size and above.

Installation

The CPSS should be fixed from the rear for maximum security. This can be achieved using angle section mounting brackets fixed to the surround of the diffuser and sandwiching the ceiling, or wall.

Alternatively, the diffuser can be face fixed using security screws.

Features

- Highly Secure Heavy Duty construction.
- Secure diffuser fixing by 3 mm thick aluminium spacers.
- 2 or 3 mm thick perforated steel diffusion plate.
- Mitred and welded corners.
- 2 or 3 mm diameter holes for 30, or 40 % free area.
- 4 mm thick aluminium surround.

Options

SSA, SRA and RRA Neck Adaptors are available to suit a wide range of duct sizes.

Premi-Aire™, or Galvanised Cushion Head boxes are available to suit standard spiral ducting.

[Refer to Sections J Spiro Ducting and K Accessories].

Finish

Standard Finish is Holyoake White, or can be powder coated to specific requirements.

CPSS- Ceiling Perforated Supply Secure

Contact your local Holyoake branch for specific requirements and local material variations.

Performance Data – CPSS

Nominal Neck (mm)	Flowrate (I/s)	25	50	75	100	150	200	250	300	400	500	600	700	800	900	1000
200x200	Vel (m/s)	0.7	1.4	2.1	2.8	4.2	5.5	6.9								
	ΔP_{s_1} (Pa)	4	15	35	62	139										
A _N = 0.036	ΔP _{s,2} (Pa)	1	6	13	23	53	94	146								
225x225	Vel (m/s)	0.5	1.1	1.6	2.2	3.2	4.3	5.4	6.5							
	$\Delta P_{_{\mathrm{S}1}}$ (Pa)	2	9	20	36	81	143									
A _N = 0.046	ΔP_{s2} (Pa)	1	3	8	14	31	54	85	122							
250x250	Vel (m/s)	0.4	0.9	1.3	1.7	2.6	3.5	4.3	5.2	6.9						
	$\Delta P_{_{\!S1}}$ (Pa)	1	6	13	22	50	89	139								
A _N = 0.058	$\Delta P_{_{ m S2}}$ (Pa)	1	2	5	8	19	34	53	76	135						
300x300	Vel (m/s)	0.3	0.6	0.9	1.2	1.8	2.4	3.0	3.6	4.8	5.9	7.1				
	$\Delta P_{_{\!S1}}$ (Pa)	1	2	6	10	22	39	62	89	158						
A _N = 0.084	$\Delta P_{_{ m S2}}$ (Pa)	0	1	2	4	8	15	23	34	60	94	135				
350x350	Vel (m/s)	0.2	0.4	0.6	0.9	1.3	1.7	2.2	2.6	3.5	4.3	5.2	6.1	6.9		
	ΔP_{S1} (Pa)	0	1	3	5	11	20	31	45	80	126					
A _N = 0.116	$\Delta P_{_{ m S2}}$ (Pa)	0	0	1	2	4	8	12	17	31	48	69	93	122		
400x400	Vel (m/s)	0.2	0.3	0.5	0.7	1.0	1.3	1.6	2.0	2.6	3.3	3.9	4.6	5.3	5.9	6.6
	$\Delta P_{_{\mathrm{S1}}}$ (Pa)	0	1	2	3	6	11	18	25	45	70	102				
A _N = 0.152	ΔP_{s2} (Pa)	0	0	1	1	2	4	7	10	17	27	39	52	69	87	107
450x450	Vel (m/s)	0.1	0.3	0.4	0.5	0.8	1.0	1.3	1.5	2.1	2.6	3.1	3.6	4.1	4.6	5.2
	$\Delta P_{_{\mathrm{S1}}}$ (Pa)	0	0	1	2	4	7	11	15	27	43	61	83	109		
A _N = 0.194	ΔP_{s2} (Pa)	0	0	0	1	1	3	4	6	10	16	23	32	41	52	65
500x500	Vel (m/s)	0.1	0.2	0.3	0.4	0.6	0.8	1.0	1.2	1.7	2.1	2.5	2.9	3.3	3.7	4.2
	ΔP_{s_1} (Pa)	0	0	1	1	2	4	7	10	17	27	39	53	70	88	109
A _N = 0.240	ΔP_{s2} (Pa)	0	0	0	0	1	2	3	4	7	10	15	20	26	33	41
550x550	Vel (m/s)	0.1	0.2	0.3	0.3	0.5	0.7	0.9	1.0	1.4	1.7	2.1	2.4	2.7	3.1	3.4
	ΔP_{s_1} (Pa)	0	0	0	1	2	3	5	7	12	18	26	36	47	59	73
A _N = 0.292	ΔP_{s2} (Pa)	0	0	0	0	1	1	2	2	4	7	10	14	18	22	28
600x600	Vel (m/s)	0.1	0.1	0.2	0.3	0.4	0.6	0.7	0.9	1.1	1.4	1.7	2.0	2.3	2.6	2.9
	$\Delta P_{_{\mathrm{S}1}}$ (Pa)	0	0	0	1	1	2	3	5	8	13	18	25	32	41	50
A _N = 0.348	ΔP_{s2} (Pa)	0	0	0	0	0	1	1	2	3	5	7	9	12	16	19

	Guide Product Weights											
Description	Size	Approximate Weight in Kg.										
CPSS	200 x 200	0.99										
CPSS INC												
SECURE BOX	250 x 250	8.56										

Performance Notes

- 1. Vel (m/s) is the duct velocity.
- 2. A_N is the neck area in m^2 .
- 3. $\Delta P_{\rm S1}$ (Pa) is based on a 2mm thick diffusion plate with 2mm diameter holes. Free Area 30%.
- 4. ΔP_{s_2} [Pa] is based on a 3mm thick diffusion plate with 3mm diameter holes. Free Area 40%.
- 5. Minimum size 190 x 190 exact neck.
- 6. For ceiling applications, seismic restraints would be required, but not supplied.

CPSHS – Perforated Secure Diffuser

Model: CPSHS

The Holyoake Series CPSHS range of Perforated Supply High Secure Diffusers has been designed to provide a medium to high level of security, for "At Risk" and "High Secure" areas within Prisons, Detention Centres and Holding Cells.

The CPSHS is manufactured from Stainless Steel Type 304, for easy wash down and is fitted with a single piece construction face plate. This ensures no ledges and with a long welded sleeve with neck clamping flanges, eliminates the need for face fixings. Coupled with the small 2 mm diameter holes, the Holyoake CPSHS has all the attributes "High Secure" areas demand.

Construction

The Series CPSHS comprises of a 1.2 mm thick perforated stainless steel one piece diffusion face plate, with integral seamless 25 mm flange, mounted in a long, welded, stainless steel sleeve, with neck clamping flanges and a 1.6 mm rear cross bar, spot welded to the rear of the diffuser, for added strength and security.

Installation

The CPSHS must be fixed from the rear for maximum security, using the neck clamping plates to sandwich the concrete floor, creating a "High Secure" fixing.

We recommend the concrete ceiling is recessed to conceal the flange edge, see below.

Features

- Highly secure Heavy Duty construction.
- · Neck clamping flanges for secure diffuser fixing.
- 1.2 mm thick perforated stainless steel diffusion plate.
- One piece construction face plate for maximum security.
- 2 mm diameter holes for 40% free area.

Options

The CPSHS diffusers are available in a range of sizes, however, all are individually punched. Therefore, we recommend that sizes and quantities are discussed with your local Holyoake branch, to ensure the most cost effective solution is agreed, prior to manufacture.

Finish

Standard, is 304 grade stainless steel Mill finish.

${\sf Performance\ Data-CPSHS}$

Neck (mm)	Flowrate (I/s)	25	50	75	100	150	200	250	300	400	500	600	700	800	900	1000
200 x 200	Vel (m/s)	0.7	1.4	2.1	2.8	4.2										
	∆P (Pa)	4	15	35	62	139										
225 x 225	Vel (m/s)	0.5	1.1	1.6	2.2	3.2	4.3									
	∆P (Pa)	2	9	20	36	81	143									
250 x 250	Vel (m/s)	0.4	0.9	1.3	1.7	2.6	3.5	4.3								
	∆P (Pa)			13	22	50	89	139								
300 x 300	Vel (m/s)	0.3	0.6	0.9	1.2	1.8	2.4	3	3.6	4.8						
	∆P (Pa)		2	6	10	22	39	62	89	158						
350 x 350	Vel (m/s)	0.2	0.4	0.6	0.9	1.3	1.7	2.2	2.6	3.5	4.3					
	∆P (Pa)		1	3		11	20	31	45	80	126					
400 x 400	Vel (m/s)	0.2	0.3	0.5	0.7	1	1.3	1.6	2	2.6	3.3	3.9				
	∆P (Pa)		1.	2	3	6	11	18	25	45	70	102				
450 x 450	Vel (m/s)	0.1	0.3	0.4	0.5	0.8	1	1.3	1.5	2.1	2.6	3.1	3.6	4.1		
	∆P (Pa)		0	1	2	4	7	11	15	27	43	61	83	109		
500 x 500	Vel (m/s)	0.1	0.2	0.3	0.4	0.6	0.8	1	1.2	1.7	2.1	2.5	2.9	3.3	3.7	4.2
	∆P (Pa)		0	1		2	4	7	10	17	27	39	53	70	88	109

Guide Product Weights										
Description	Size	Approximate Weight in Kg.								
CPSHS INC										
SECURE BOX	250 x 250	4.84								

Performance Notes

- 1. Vel (m/s) is the duct velocity.
- 2. Minimum size 200 x 200 neck.
- 3. Seismic restraints may be required, but not supplied.

CPMS – Maximum Security Diffuser

Model: CPMS

The Holyoake Series CPMS Perforated Maximum Security Diffuser has been designed specifically for maximum security prisons. The diffuser has been tested to meet grade 2 requirements of American corrections standard ASTM F2542 (Standard test methods for physical assault on ventilation grilles for detention and correctional facilities).

BRANZ Type Test ST1068-TT
 Summary availiable on request or at:
 https://www.branz.co.nz/appraisal-codemark-certificates/
 [Certified for grade 2 requirements]

*Test certification is only available for the 200mm size.

The CPMS is manufactured from Stainless Steel Type 304, for easy wash down. The single piece faceplate ensures no pryable edges and a seamless finish when installed. Coupled with the small 2 mm diameter holes, the Holyoake CPMS has all the attributes that maximum security prisons require.

Construction

The Series CPMS comprises of a 1.8 mm thick perforated stainless steel face plate welded to the duct portion of the diffuser. Two high strength 20mm K700 Bohler bars are securely welded to the duct as required by corrections. M8 threaded rods attached to the faceplate are fastened to the 3mm stainless steel mounting.

Installation

- The rear mounting frame is fastened on the back of the ceiling/wall with appropriate fixings, 10mm holes are provided in the base of the mounting frame for this purpose.
- 2. The CPMS diffuser is securely fitted by clamping the diffuser into the ceiling/wall between the front face and the rear mounting frame via the M8 threaded rods, supplied with the product.
- 3. After the diffuser is securely clamped in place, M8 x 20 bolts are to be fitted through the mounting frame and into the duct portion of the diffuser. 8mm holes in the neck of the mounting frame provide a guide for drilling. All on site fixings are to be provided by the installer.

Features

- Heavy duty construction for maximum security prisons.
- 3mm Stainless Steel Mounting frame supplied with all required holes for installation.
- 1.8 mm thick perforated stainless steel diffusion plate.
- One piece construction face plate provides a seamless finish.
- 2 mm diameter holes with 22% free area.

Finish

304 grade stainless steel Mill finish.

Note: This product range is expanding at the time of print, please contact your local Holyoake branch for current sizes.

	Guide Product Weights											
Description Neck Size Approximate Weight in Kg.												
CPMS 200	200 x 200	12										
CPMS 250	250 x 250	14										

Performance Data – CPMS

Neck (mm)	Flowrate (I/s)	25	50	75	100	150	200	250	300	400	500	600	700	800
200 x 200	Vel (m/s)	0.6	1.3	1.9	2.5	3.8	5							
Supply	∆P (Pa)	6	27	60	108	158	260							
Return	Neg ∆P (Pa)	10	16	48	86	139	238							
	NC	22	22	23	23	24	24							
250 x 250	Vel (m/s)	0.4	0.8	1.2	1.6	2.4	3.2	4	4.8					
Supply	∆P (Pa)	4	12	31	50	88	129	179	240					
Return	Neg ∆P (Pa)	6	11	23	37	69	109	159	219					
	NC	21	21	22	22	23	23	24	23					

Performance Notes

- 1. Vel (m/s) is the duct velocity.
- 2. Seismic restraints may be required, but not supplied.

CPR, CPS, CPMS, CPSHS, CPSS, CPT & CPTR

Product Ordering Key and Suggested Specifications

Ceiling Perforated diffusers shall be Holyoake Series CPS, or CPR and shall consist of an extruded aluminium frame with close mitred corners and 0.75 mm aluminium perforated face in an extruded aluminium sub-frame. The face shall be removable, by means of a separate mounting frame, which if used for supply air shall be furnished with field adjustable pattern control louvers and a galvanised steel plenum with duct connection. All shall be as manufactured by Holyoake.

Ceiling Perforated Maximum Security Grilles (CPMS) shall be constructed of Stainless Steel type 304 for easy wash down. The faceplate shall be constructed from a single piece with 2mm holes, with no ledges or face fixings. They shall be tested to ASTM F254 and meet a minimum grade 2 rating. All shall be as manufactured by Holyoake.

Ceiling Perforated Supply High Secure diffusers shall be Holyoake Series CPSHS. These shall be constructed from a single piece of Stainless Steel 304 Grade face plate, with small 2mm diameter holes, with no ledges, or face fixings. Complete with a long welded neck sleeve for full floor penetration and neck clamping flanges, ensuring no face fixings are required. All shall be as manufactured by Holyoake.

Ceiling Perforated Supply Secure diffusers shall be Holyoake Series CPSS and shall be constructed from heavy section aluminium surround to provide maximum security. 2 or 3 mm thick steel plate shall provide 30, or 40 % free area. Finished in a durable Powder Coat. All shall be as manufactured by Holyoake.

Note Seismic restraints are required, but not supplied.