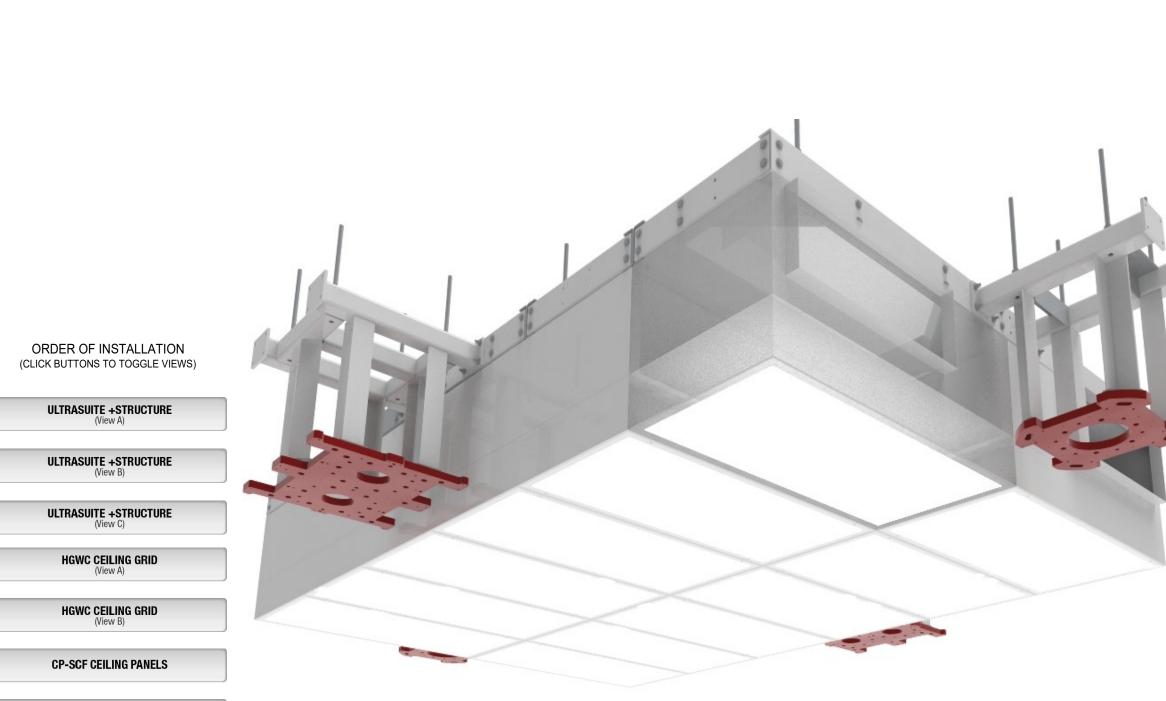
OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT

EXAMPLE SYSTEM FOR A TRADITIONAL OR

FEATURES:

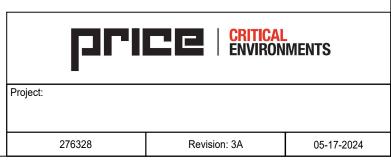

- LAMINAR FLOW DIFFUSER ARRAY WITH INTEGRATED HIGH-PERFORMANCE LED LIGHTS INSIDE EACH INDIVIDUAL MODULE AND HSS STRUCTURE FULLY CUSTOMIZABLE TO MATCH THE DEMANDING AND OFTEN CROWDED MODERN HOSPITAL AND CLEANROOM CEILING LAYOUTS
- OPTIONAL PERIMETER HGWC WELDED CEILING GRID SUPPORTS ACCESS PANELS AND FLUSH-MOUNT PANELS FOR EQUIPMENT BOOM INTEGRATION
- UL 1598 CERTIFIED, AIR-HANDLING LUMINAIRE

EXAMPLE SYSTEM						
AIRFLOW	2400	CFM				
	20	ACH				
	5000K	COLOUR TEMPERATURE				
	95	CRI				
LIGHTING & ELECTRICAL SPECIFICATIONS	100% TO 1%	DIMMING				
	0-10V					
	277	INCOMING				
	211	VOLTAGE				

	CRITICAL ENVIRONMENTS							
	Project:							
1	276328 Revision: 3A 05-17-2024							

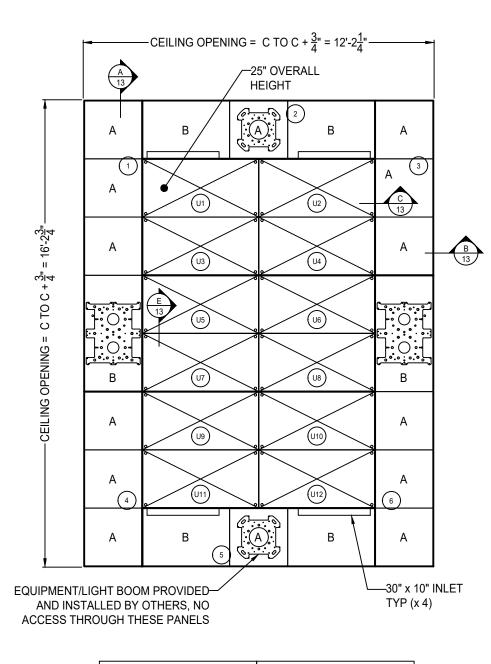
OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT 3D INTERACTIVE MODEL - TRADITIONAL OR

CP-SC CEILING PANELS


FINAL INSTALLATION

USE THE SCROLL WHEEL TO ZOOM

HOLD DOWN THE LEFT MOUSE BUTTON TO ROTATE
 HOLD DOWN CTRL AND LEFT MOUSE BUTTON TO MOVE
BOOM SUPPORT AND STRUCTURE PROVIDED AND INSTALLED BY OTHERS
BOOM AND BOOM PLATE PROVIDED AND INSTALLED BY OTHERS

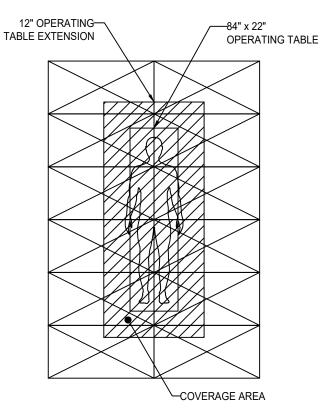


OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT

REFLECTED CEILING PLAN - TRADITIONAL OR

USA AREA = 96 sq. ft. HGWC AREA = 96 sq. ft.

	SCF - SOLID CORE FLUSH MOUNT PANELS	SC - SOLID CORE ACCESS PANELS
24 x 48 (x 12)	A: 24 x 24 (x 12)	A: 24 x 24 (x 2)
	B: 24 x 36 (x 4)	B: 24 x 48 (x 2)


B12 STANDARD WHITE FINISH

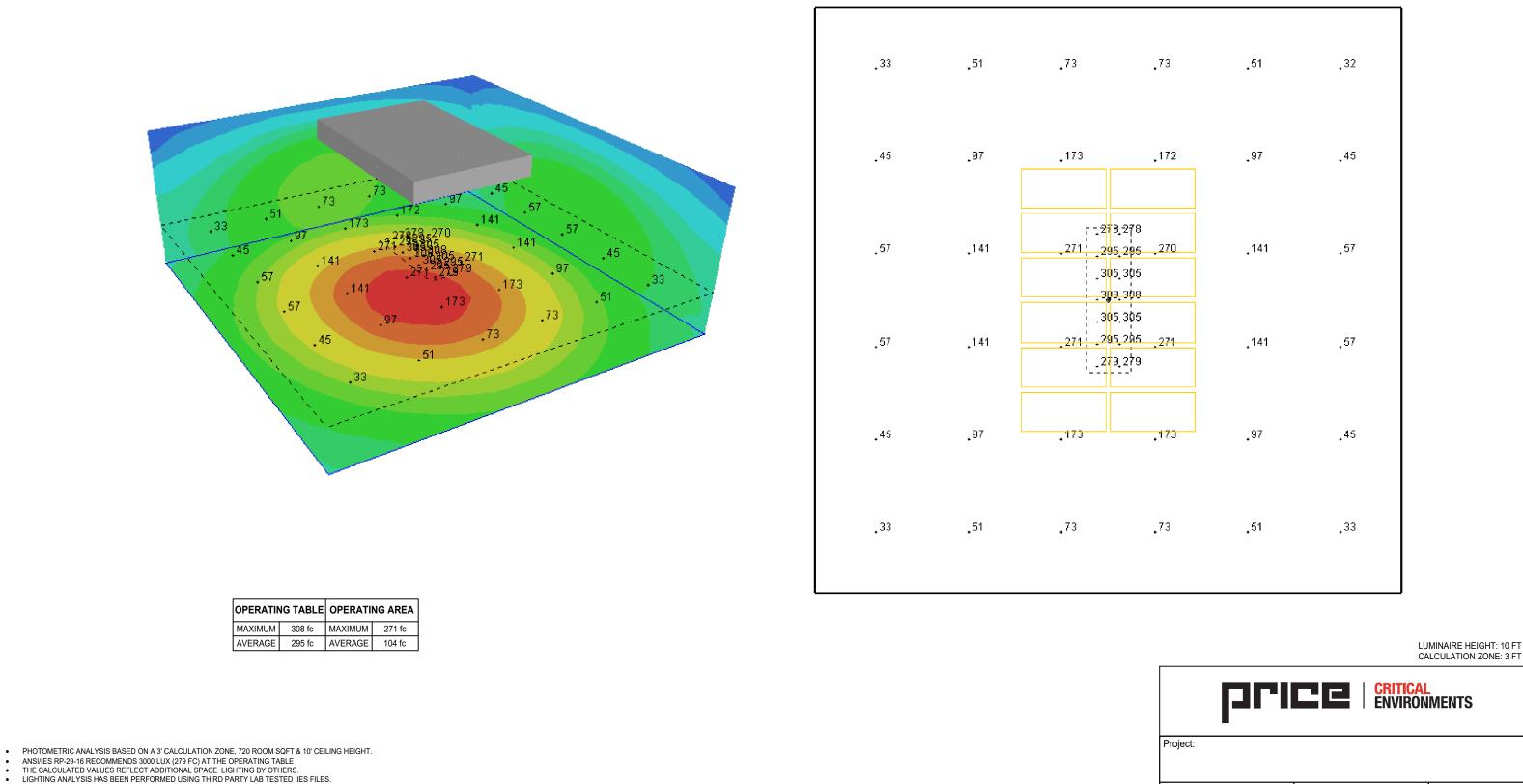
• PANEL CUTOUTS FOR BOOMS DONE IN FIELD BY OTHERS

THE CEILING IS FACTORY PREMANUFACTURED TO SIZES AND TOLERANCE +/- 16

SITE ADJUSTMENTS TO PERIMETER SOFFITS AND/OR DRYWALL MAY BE REQUIRED AND ARE THE RESPONSIBILITY OF THE INSTALLER
 ASHRAE 170 VERIFICATION IS SHOWN TO ASSIST IN PROJECT COORDINATION. FINAL ASHRAE 170 COMPLIANCE, AS WELL AS COMPLIANCE WITH ALL APPLICABLE LOCAL CODES AND REQUIREMENTS REMAINS THE RESPONSIBILITY OF THE EOR OR INSTALLER ON THE PROJECT

ASHRAE 170-2021 7.4.1.a.	ASHRAE 170-2021
COMPLIANCE AIRFLOW RANGE	7.4.1.b. COMPLIANCE
2400 - 3360 CFM BASED ON 96 SQFT	0% OF THE 12" OPERATING TABLE EXTENSIO USED FOR NON DIFFUSER USES

7.4.1.a. - THE AIRFLOW SHALL BE UNIDIRECTIONAL, DOWNWARDS, AND THE AVERAGE VELOCITY OF THE DIFFUSERS SHALL BE 25 TO 35 CFM/SQFT (127 TO 178 L/S/SQM). THE DIFFUSERS SHALL BE CONCENTRATED TO PROVIDE AN AIRFLOW PATTERN OVER THE PATIENT AND SURGICAL TEAM. 7.4.1.b. - THE COVERAGE AREA OF THE PRIMARY SUPPLY DIFFUSER ARRAY SHALL EXTEND A MINIMUM OF 12 IN. (305 mm) BEYOND THE FOOTPRINT OF THE SURGICAL TABLE ON EACH SIDE. WITHIN THE PORTION OF THE PRIMARY SUPPLY DIFFUSER ARRAY THAT CONSISTS OF AN AREA ENCOMPASSING 12 IN. (305mm) ON EACH SIDE OF THE FOOTPRINT OF THE SURGICAL TABLE, NO MORE THAN 30% OF THIS PORTION OF THE PRIMARY SUPPLY DIFFUSER ARRAY ÀREA SHALL BE USED FOR NON DIFFUSER USES SUCH AS LIGHTS, GAS COLUMNS, EQUIPMENT BOOMS, ACCESS PANELS, SPRINKLERS, ETC.


ASHRAE 170-2021 TABLE COVERAGE VERIFICATION - TRADITIONAL OR

ASHRAE 170-2021

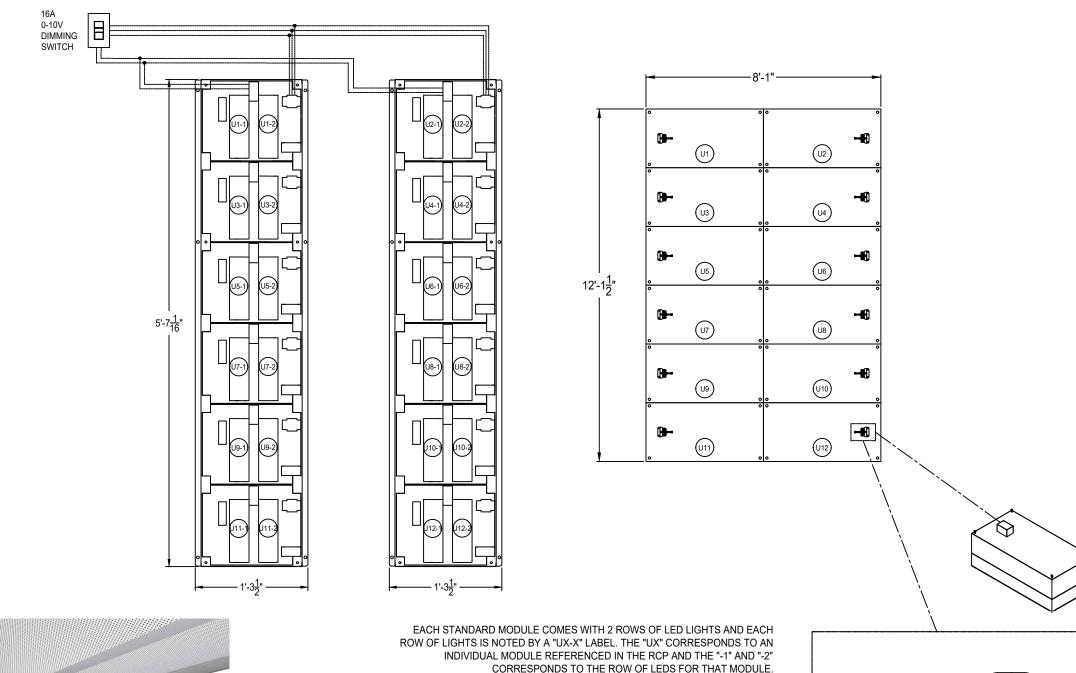
	CRITICAL ENVIRONMENTS						
	Project:						
-2-1	276328	Revision: 3A	05-17-2024				

OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT

PHOTOMETRIC ANALYSIS - TRADITIONAL OR

PHOTOMETRIC ANALYSIS BASED ON A 3' CALCULATION ZONE, 720 ROOM SQFT & 10' CEILING HEIGHT.

- THIS LAYOUT REFLECTS TWO ROWS OF 5000K, 90+ CRI LEDS PER MODULE. A THIRD ROW, HIGH OUTPUT OPTION IS AVAILABLE.
 LIGHTING CALCULATIONS ARE ESTIMATED USING BEST PRACTICE AND MAY DIFFER SLIGHTLY FROM ACTUAL FIELD CONDITIONS.


05-17-2024

Revision: 3A

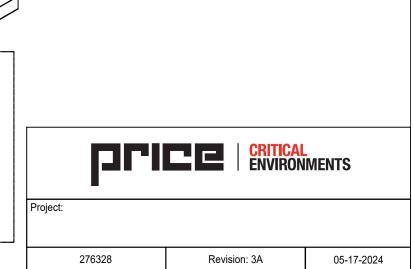
276328

OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT

• URDC ULTRA REMOTE DRIVER CABINETS - SINGLE DIMMING ZONE (100 TO 1% DIMMING) - TRADITIONAL OR

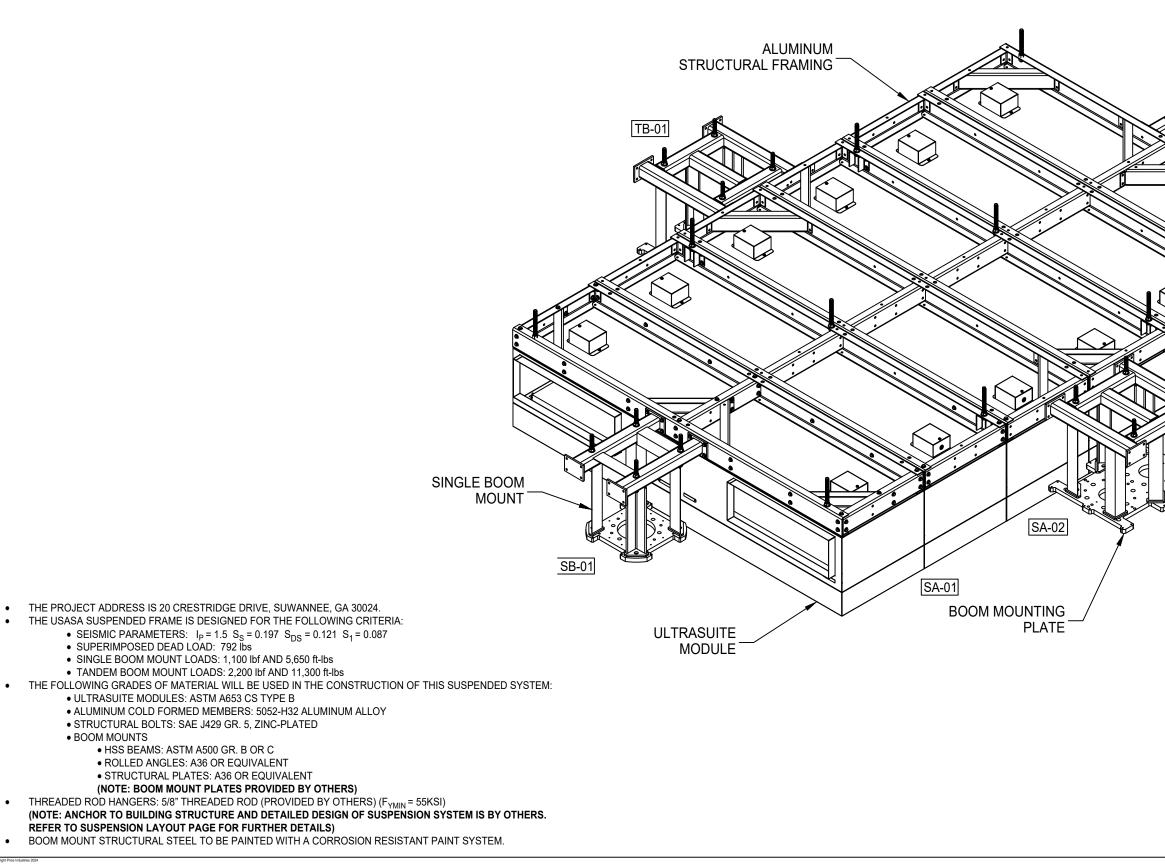
Ο UX-2) •) () 0

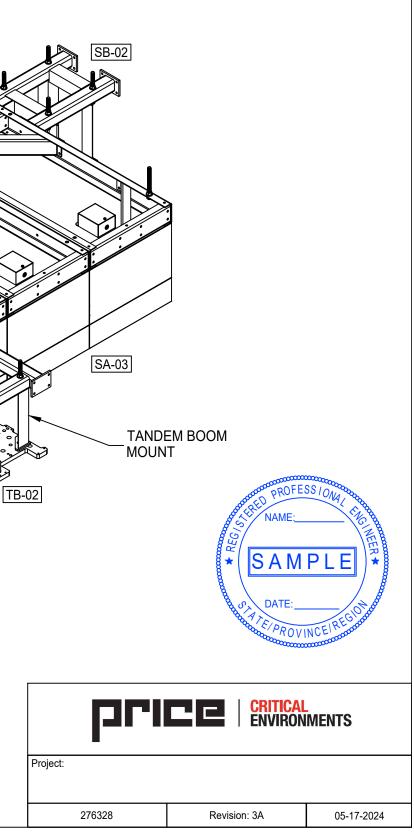
CORRESPONDS TO THE ROW OF LEDS FOR THAT MODULE. EACH "UX-X" LABEL CORRESPONDS TO ONE (+ & -) LOW VOLTAGE WIRE TO BE FIELD CONNECTED TO URDC DRIVER CABINET AS PER THE MATCHING LABELS. EACH 100W DRIVER CAN POWER 1 ROW OF LEDS (ONE HALF OF A MODULE) AND EACH 600W DRIVER CAN CONTROL 6 ROWS OF LEDS (3 MODULES)

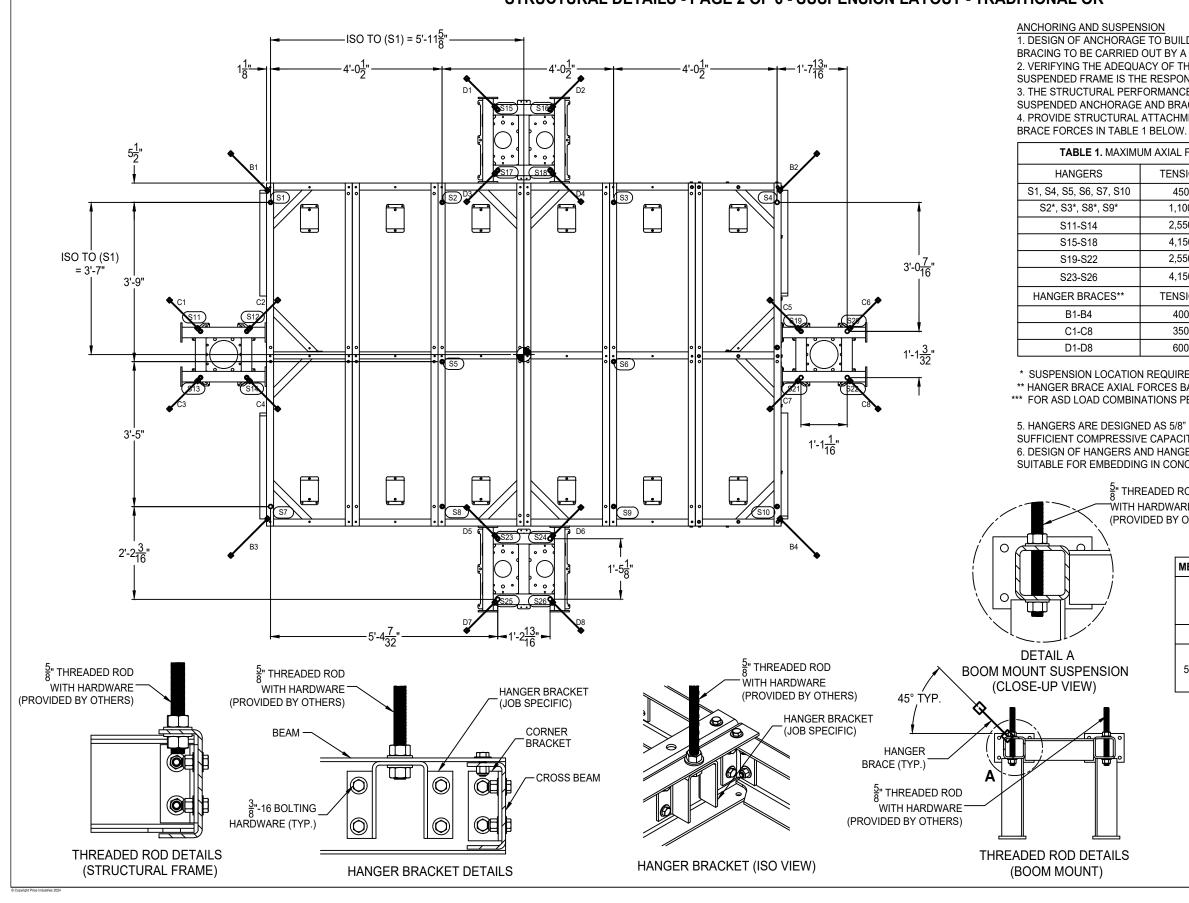

> EACH MODULE COMES WITH A TOP MOUNTED TERMINAL BLOCK ENCLOSURE (COVER NOT SHOWN) FOR LOW **VOLTAGE FIELD CONNECTIONS.** QUICK CONNECT FITTING IS SEALED THROUGH PLENUM AND ALL INTERNAL WIRING IS COMPLETED IN THE FACTORY. EACH ROW OF LEDS REQUIRES ONE (+&-) LOW VOLTAGE FIELD CONNECTIONS (TWO PER MODULE)

EACH STANDARD MODULE COMES WITH TWO ROWS OF LEDS THAT EACH REQUIRE ONE (+ & -) LOW VOLTAGE FIELD CONNECTION AND ARE NOTED BY A "UX-X" LABEL. A THIRD ROW, HIGH OUTPUT OPTION IS AVAILABLE IF REQUIRED.

INSTALLATION WORK AND ELECTRICAL WIRING MUST BE COMPLETED BY A CERTIFIED ELECTRICIAN AND/OR QUALIFIED PERSON(S) IN ACCORDANCE WITH APPLICABLE ELECTRICAL CODES AND STANDARDS


CABINET 1 - 1 OF 2 - CONTROLS 6 MODULES WITH 12 DRIVERS							
DRIVER TAG	LED WATTAGE	DRIVER TAG	LED WATTAGE				
U1-1	88	U1-2	88				
U3-1	88	U3-2	88				
U5-1	88	U5-2	88				
U7-1	88	U7-2	88				
U9-1	88	U9-2	88				
U11-1	88	U11-2	88				
TOTAL W	ATTAGE:	AC CURRENT:					
10	56	4.8A/2	77VAC				


CABINET 2 - 2 OF 2 - CONTROLS 6 MODULES WITH 12 DRIVERS							
DRIVER TAG	LED WATTAGE	DRIVER TAG	LED WATTAGE				
U2-1	88	U2-2	88				
U4-1	88	U4-2	88				
U6-1	88	U6-2	88				
U8-1	88	U8-2	88				
U10-1	88	U10-2	88				
U12-1	88	U12-2	88				
TOTAL W	ATTAGE:	AC CUP	RRENT:				
10	56	4.8A/2	77VAC				


OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT

STRUCTURAL DETAILS - PAGE 1 OF 6 - ISOMETRIC VIEW - TRADITIONAL OR

OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT STRUCTURAL DETAILS - PAGE 2 OF 6 - SUSPENSION LAYOUT - TRADITIONAL OR

1. DESIGN OF ANCHORAGE TO BUILDING STRUCTURE, INCLUDING DETAILED DESIGN OF HANGERS AND BRACING TO BE CARRIED OUT BY A DESIGN PROFESSIONAL.

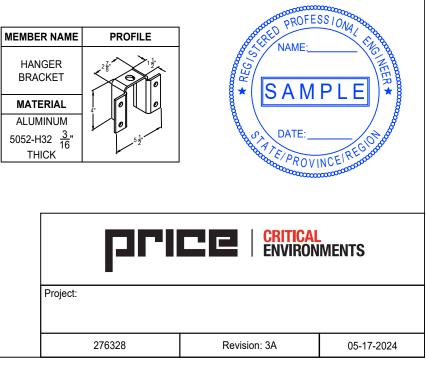
2. VERIFYING THE ADEQUACY OF THE MAIN BUILDING STRUCTURE TO RESIST LOADS IMPARTED BY THE SUSPENDED FRAME IS THE RESPONSIBILITY OF OTHERS.

3. THE STRUCTURAL PERFORMANCE OF THE SUSPENDED FRAME HAS BEEN VERIFIED BASED ON A NOMINAL SUSPENDED ANCHORAGE AND BRACING DESCRIBED HERE.

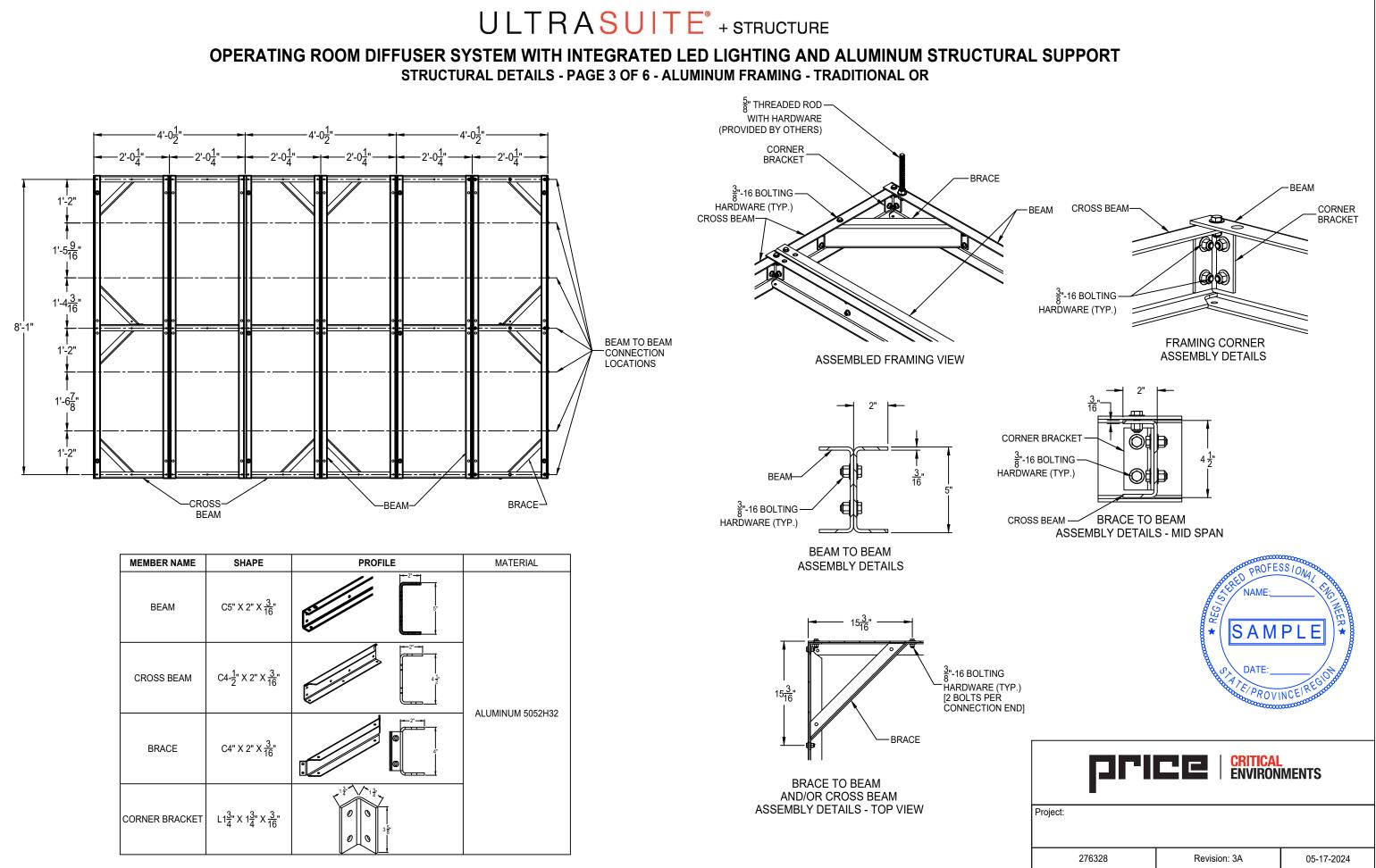
4. PROVIDE STRUCTURAL ATTACHMENTS AND BRACES TO SATISFY THE ASD HANGER AND HANGER

KIAL FORCES*** [LBF]					
FENSION	COMPRESSION				
450	300				
1,100	850				
2,550	2,050				
4,150	3,150				
2,550	2,050				
4,150	3,150				
FENSION	COMPRESSION				
400	400				
350	250				
600	400				

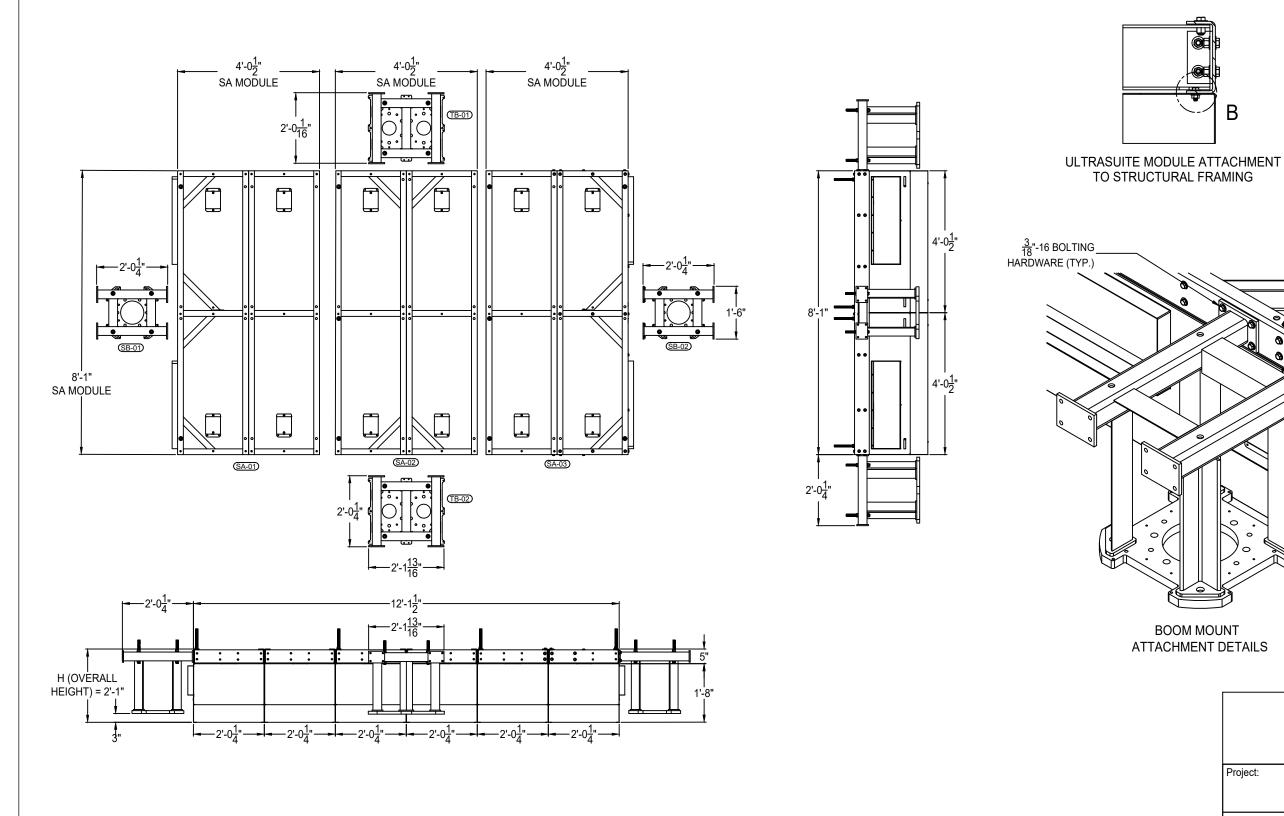
TENSI

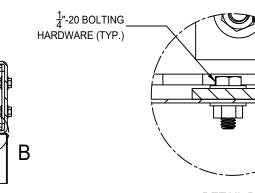

TENSI

* SUSPENSION LOCATION REQUIRES HANGER BRACKET REINFORCEMENT (JOB SPECIFIC) ** HANGER BRACE AXIAL FORCES BASED ON 45 DEGREE ANGLE TO HORIZONTAL PLANE *** FOR ASD LOAD COMBINATIONS PER DESIGN REPORT 2024002-DR01

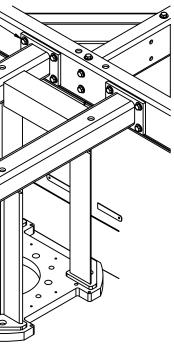

5. HANGERS ARE DESIGNED AS 5/8" GRADE 55 THREADED ROD AND COULD REQUIRE STIFFENING TO ATTAIN SUFFICIENT COMPRESSIVE CAPACITY FOR ROD LENGTHS EXCEEDING 12 INCHES (DESIGN BY OTHERS). 6. DESIGN OF HANGERS AND HANGER BRACES ASSUME UNRESTRAINED ROTATIONS (PINNED CONDITION) SUITABLE FOR EMBEDDING IN CONCRETE: ALTERNATE HANGER/BRACE DESIGN CAN BE EVALUATED UPON REQUEST

> 5" THREADED ROD WITH HARDWARE

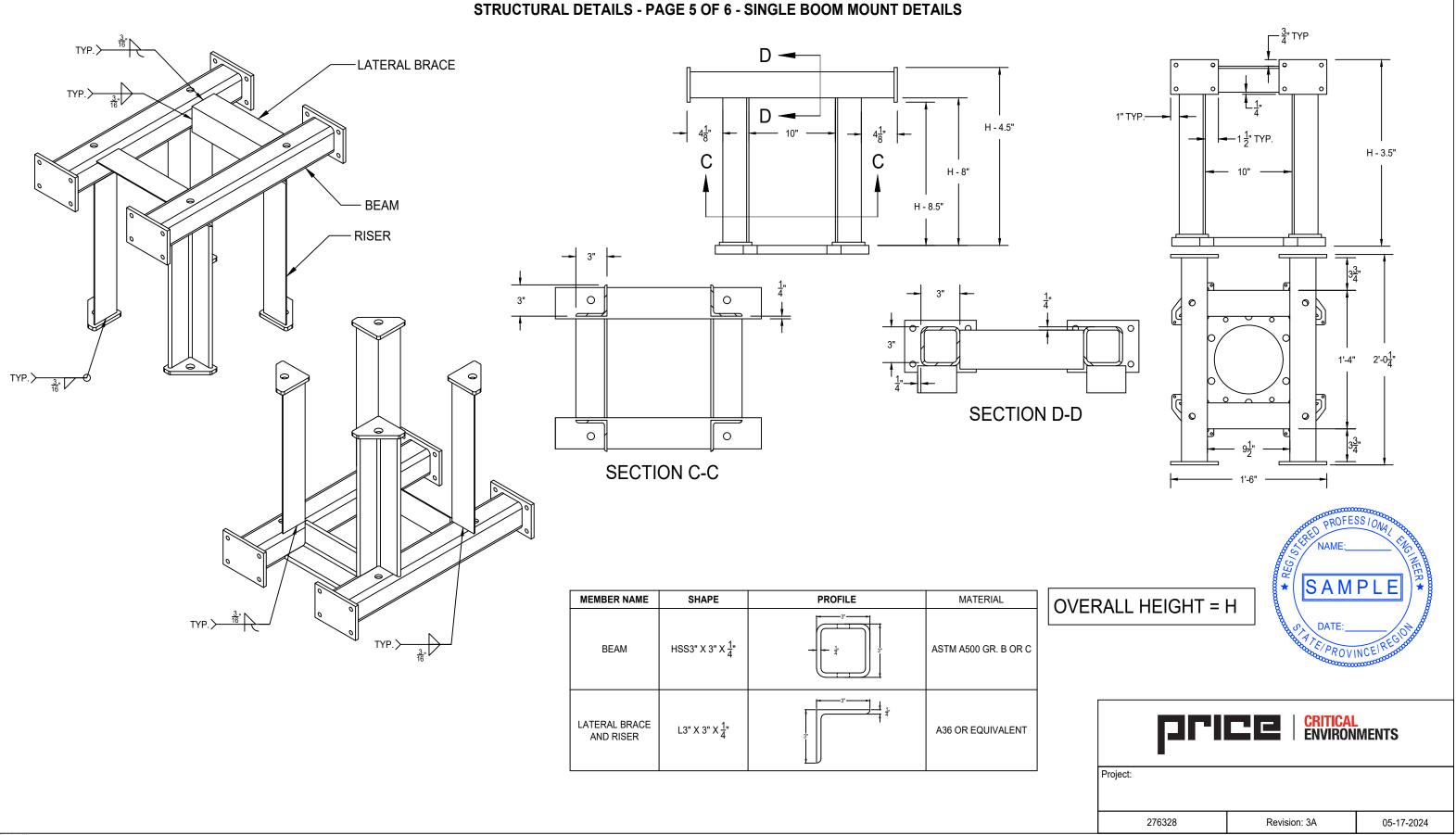

(PROVIDED BY OTHERS)

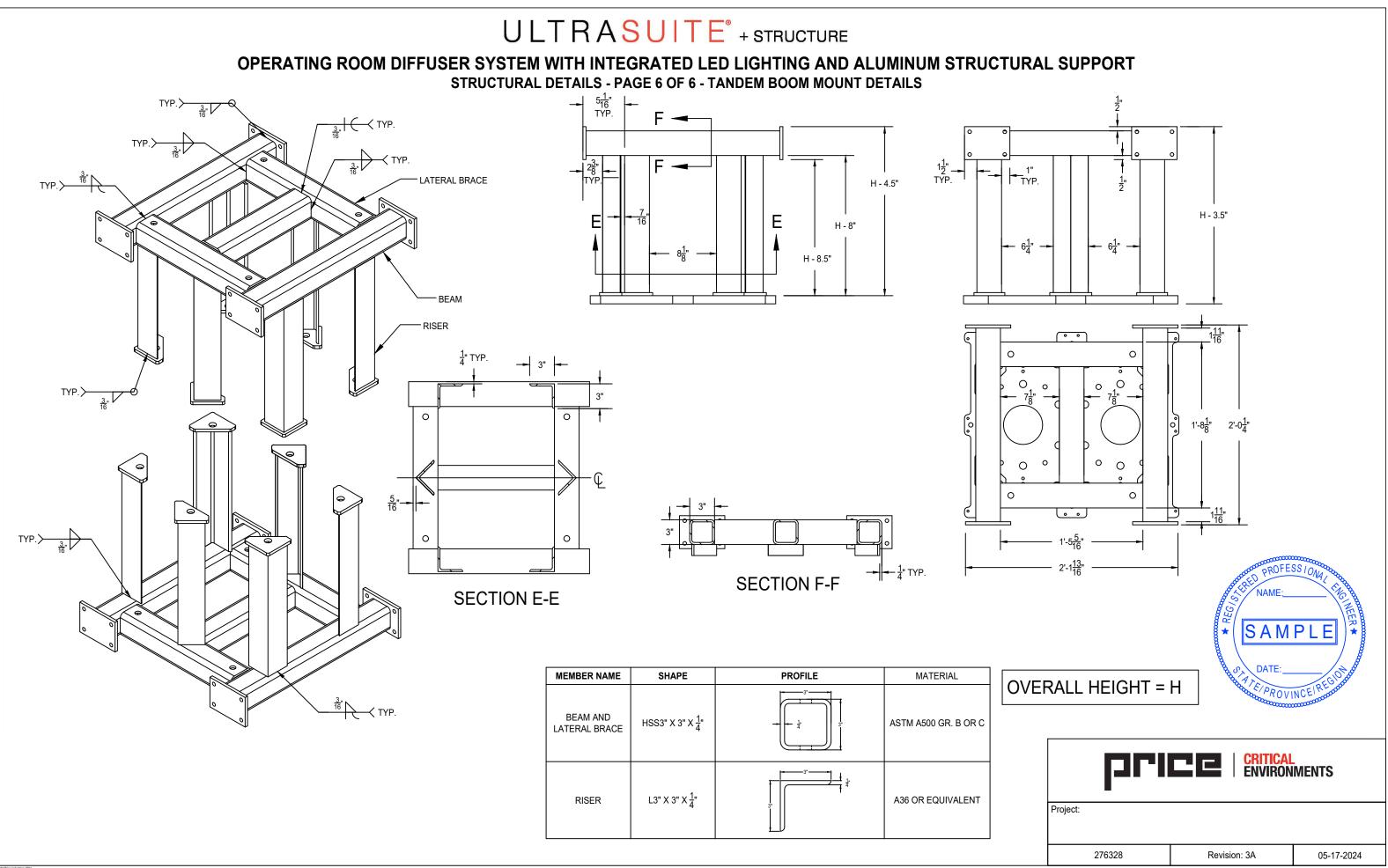


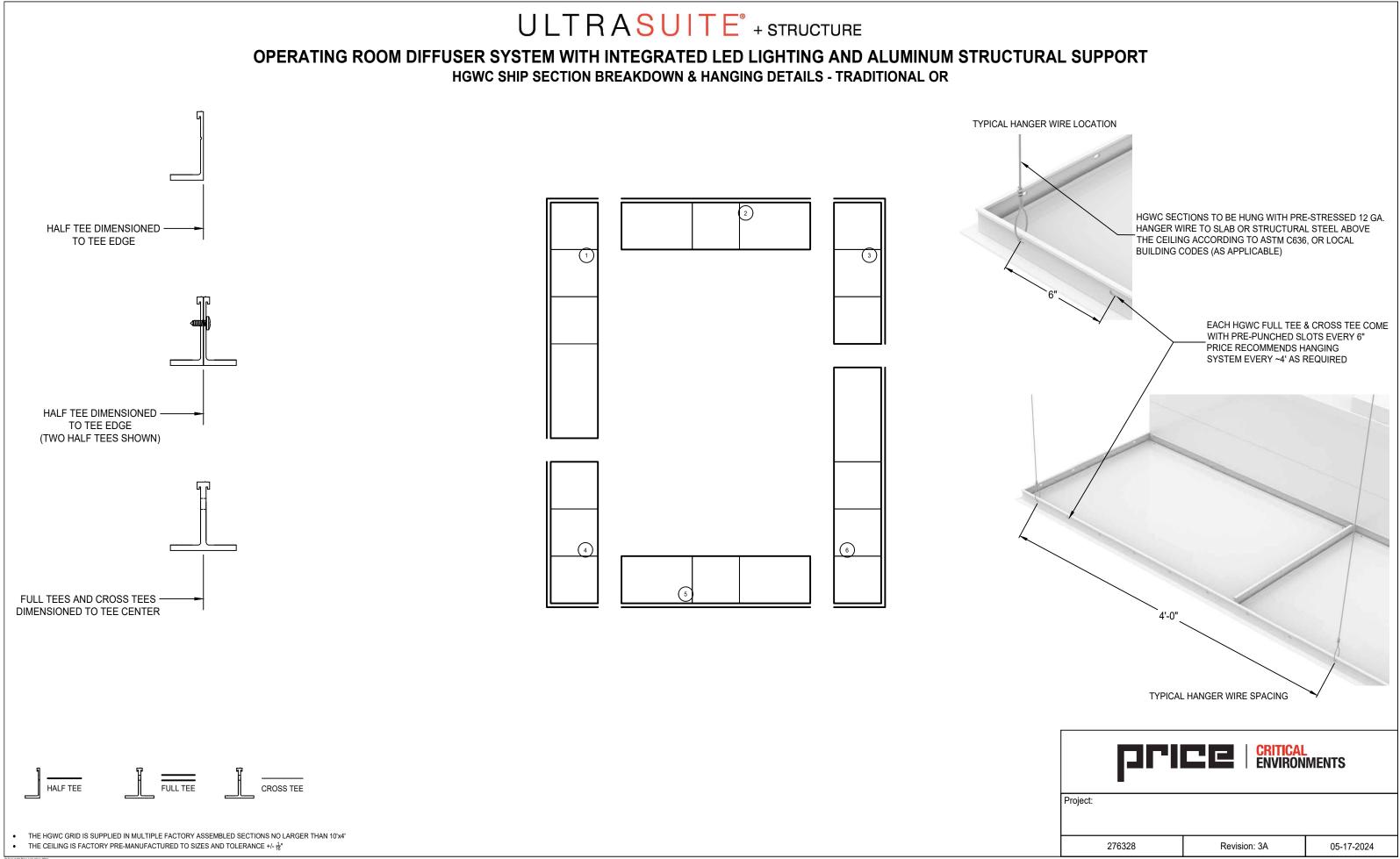
ULTRASUITE[®] + STRUCTURE STRUCTURAL DETAILS - PAGE 3 OF 6 - ALUMINUM FRAMING - TRADITIONAL OR


OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT STRUCTURAL DETAILS - PAGE 4 OF 6 - MODULE BREAKDOWN VIEW - TRADITIONAL OR

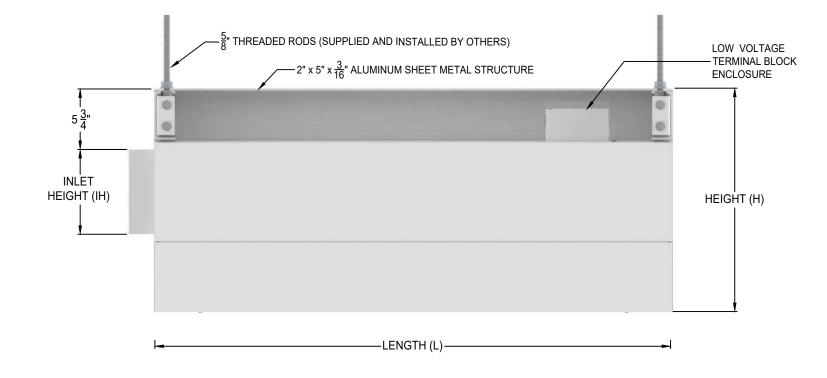
DETAIL B ULTRASUITE ATTACHMENT (CLOSE-UP VIEW)







OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT



OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT

- 14 GA (.064" THICK) ALUMINUM PLENUM •
- EXTRUDED ALUMINUM OUTER FRAME AND DIFFUSER FACE FRAME •
- 5 GA (.188" THICK) SHEET METAL ALUMINUM STRUCTURE •
- ROOM-SIDE ADJUSTABLE APERTURE PLATE DAMPER ٠
- TWO STAINLESS STEEL RETAINER CABLES PER DIFFUSER FACE .
- DIFFUSER FACE SECURED WITH $\frac{1}{4}$ TURN FASTENERS ٠

LED LIGHTING SPECIFICATIONS

- LED LIGHTING INTEGRATED INTO EACH DIFFUSER MODULE ٠
- IP67 RATED LED STRIP WITH QUICK CONNECTORS ٠
- COLOR RENDERING INDEX (CRI) 95 •
- L80>60.000 HRS •
- FOR IES PHOTOMETRIC FILES VISIT: •
- www.priceindustries.com/criticalenvironments/products/ultrasuite

FINISH

- B12 WHITE
- OPTIONAL AMB12 ANTI-MICROBIAL WHITE

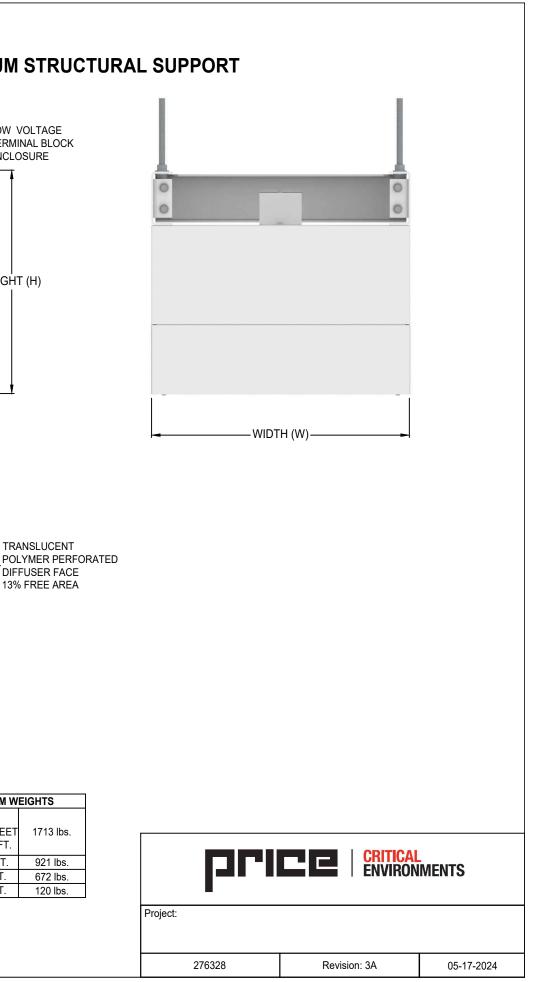
LED COLOR TEMPERATURE

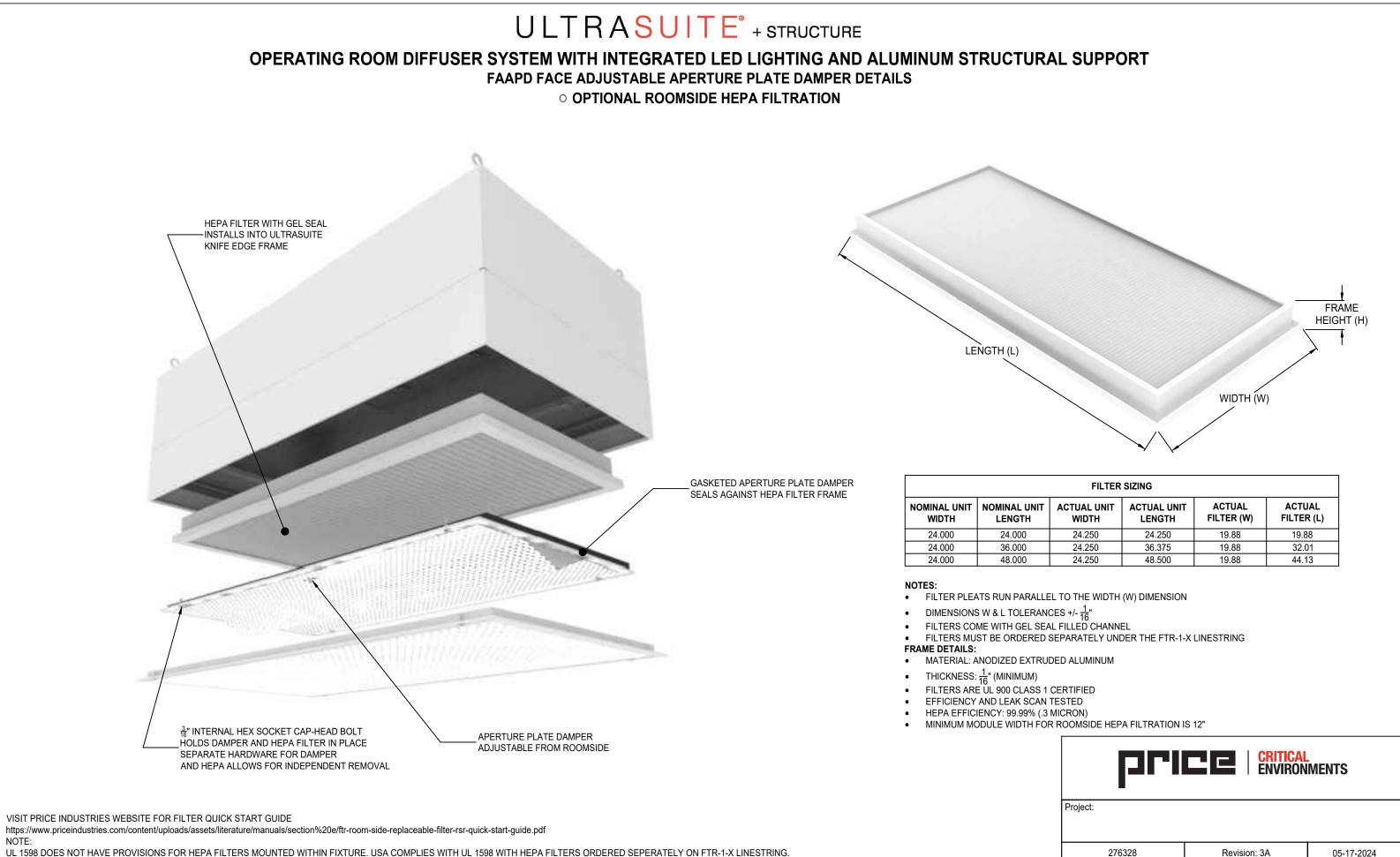
- 5000K (W935)
- OPTIONAL 4000K (W930)

LISTINGS

- UL 1598/CSA C22.2 #250.0 AIR-HANDLING LUMINAIRES
- UL 2043 FIRE TEST FOR HEAT AND VISIBLE SMOKE RELEASE FOR DISCRETE PRODUCTS AND THEIR ACCESSORIES INSTALLED IN AIR-HANDLING SPACES
- UL 2108/CSA 22.2#250.0 LOW VOLTAGE LIGHTING SYSTEM ٠
- UL 8750/CSA-C22.2 #250.13 LIGHT EMITTING DIODE (LED) EQUIPMENT FOR USE IN LIGHTING PRODUCTS ٠
- UL 1310/CSA C22.2 #223-M91 CLASS 2 POWER UNITS •
- UL 94 FLAMMABILITY OF PLASTIC MATERIALS FOR PARTS IN DEVICES AND APPLIANCES ٠
- IP 67 RATED INGRESS PROTECTION AGAINST DUST AND LIQUIDS •
- MIL-STD-461 ELECTROMAGNETIC COMPATIBILITY •

STANDARD MODULE SIZING CHART								
NOMINAL NOMINAL ACTUAL ACTUAL HEIGHT (H)								
(W)	(L)	(W)	(L)	MIN	MAX			
24.000	24.000	24.250	24.250	15	25			
24.000	36.000	24.250	36.375	15	25			
24.000	48.000	24.250	48.500	15	25			

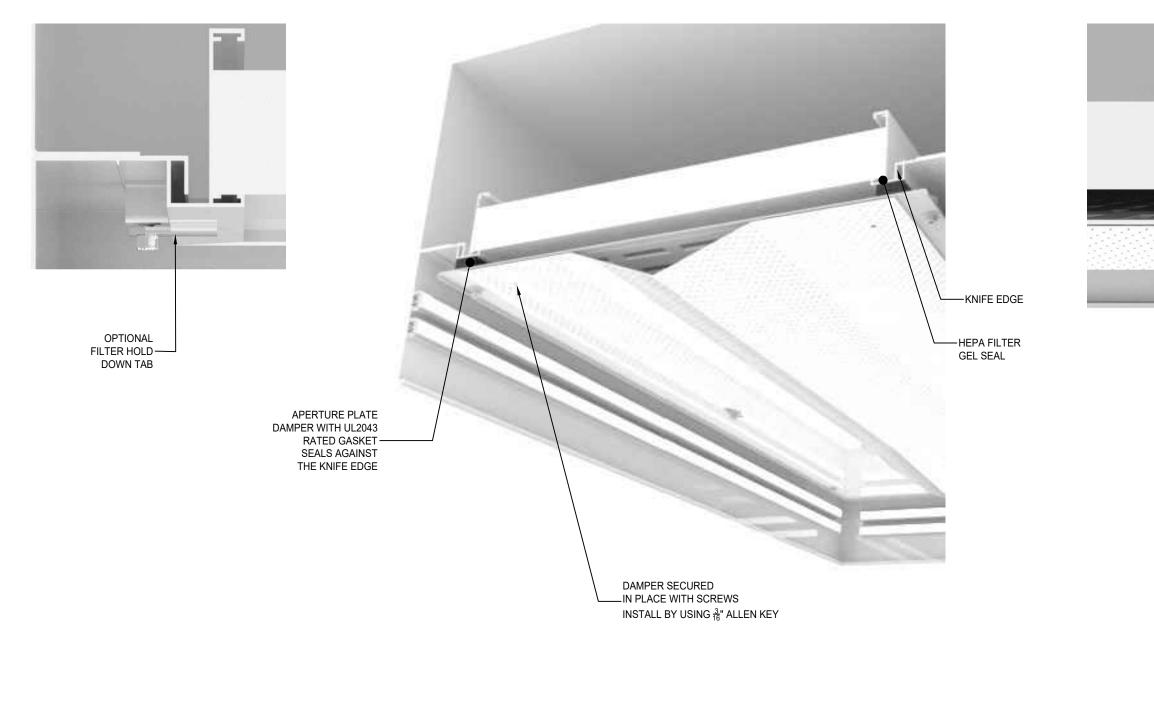

- STANDARD HEIGHT (H) = 20"
 MINIMUM HEIGHT WITH HEPA FILTER = 17"
- MINIMUM WIDTH WITH HEPA FILTER = 13" ٠
- MAX INLET HEIGHT (IH) = HEIGHT (H) 12"
- MAX INLET HEIGHT (IH) WITH HEPA = HEIGHT (H) 13"


PRICE CEILING SYSTEM WEIGHTS							
PRICE SUPPLIED COMPONENTS	TOTAL SQUARE FEET =308 SQ.FT.	1713 lbs.					
STRUCTURE	116 SQ.FT.	921 lbs.					
USA	96 SQ.FT.	672 lbs.					
HGWC+PANELS	96 SQ.FT.	120 lbs.					

TRANSLUCENT

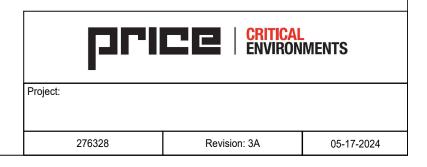
DIFFUSER FACE

13% FREE AREA

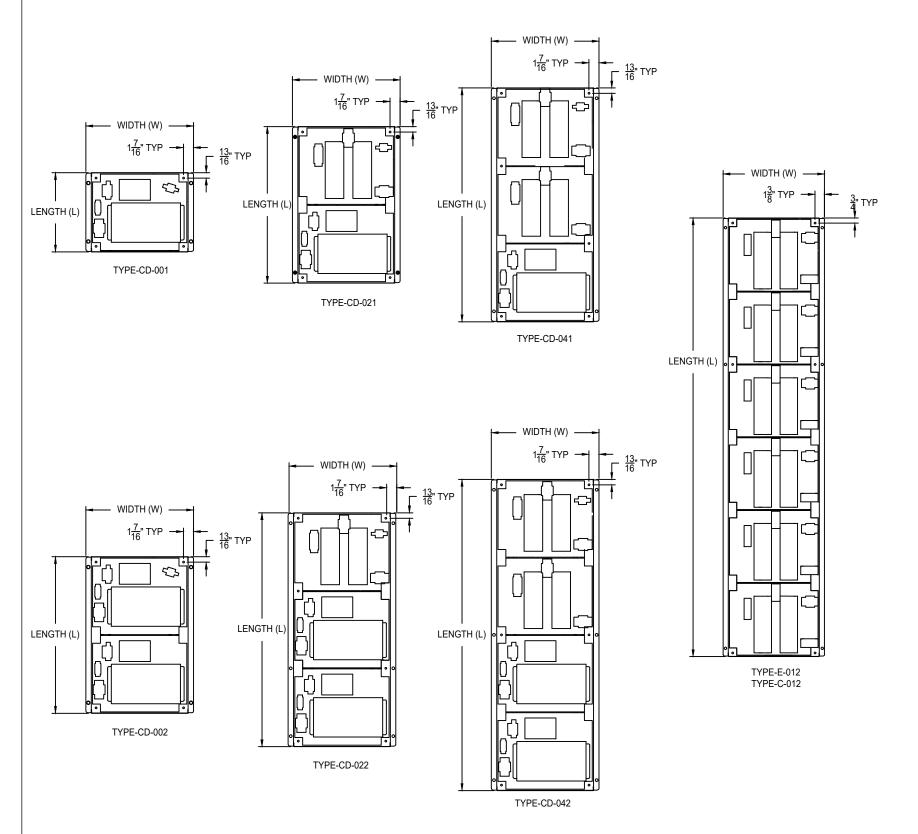


UL 1598 DOES NOT HAVE PROVISIONS FOR HEPA FILTERS MOUNTED WITHIN FIXTURE. USA COMPLIES WITH UL 1598 WITH HEPA FILTERS ORDERED SEPERATELY ON FTR-1-X LINESTRING.

OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT FAAPD FACE ADJUSTABLE APERTURE PLATE DAMPER DETAILS


• OPTIONAL ROOMSIDE HEPA FILTRATION

FILTER HOLD DOWN TAB DETAIL


STATIC PRESSURE PORT DETAIL _OPTIONAL HEPA FILTER -KNIFE EDGE STATIC -PRESSURE PORT

APERTURE PLATE DAMPER WITH UL2043 -RATED GASKET SEALS AGAINST THE HEPA FRAME

ULTRASUITE + STRUCTURE **OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT**

URDC ULTRA REMOTE DRIVER CABINETS - STANDARD OFFERINGS

- ALL DRIVER CABINETS ARE ORDERED ON URDC-1-X LINESTRING. •
- ALL DIMMING SWITCHES ARE ORDERED ON UCA-1-X LINESTRING. ٠
- . SHOULD NOT EXCEED 500'. DO NOT USE WIRE SMALLER THAN 20 AWG.
- 0-10V DIMMING SIGNAL FROM SWITCH CAN CONTROL UP TO 100 DRIVERS.
- SHIPPED LOOSE OR DIMMING SIGNAL PROVIDED BY OTHERS.
- LED DRIVER TYPE C AND CD OFFERS CONTINUOUS, FLICKER-FREE DIMMING FROM 100% TO 10% WITH 0-10 VOLTAGE DIMMING SIGNAL PROVIDED BY OTHERS
- 30A DISCONNECT SWITCH AVAILABLE TO PROVIDE FULL SYSTEM SHUTOFF WHEN UTILIZING 0-10V SIGNAL .
- LED DRIVERS SHIP FACTORY WIRED AND INSTALLED IN REMOTE DRIVER CABINETS. .
- ABOVE THE CEILING. DRIVER CABINETS CANNOT BE RECESSED BETWEEN WALL STUDS AS THEY REQUIRE VENTILATION.
- ENCLOSURE
- DRIVER CABINET ARE THE RESPONSIBILITY OF THE INSTALLER.
- MINIMIZE VOLTAGE DROP. SEE TABLE BELOW.
- SEE ULTRASUITE INSTALLATION MANUAL AVAILABLE AT https://www.priceindustries.com/criticalenvironments/products/ultrasuite FOR RECOMMENDED REMOTE DRIVER CABINET AND ULTRASUITE SYSTEM INSTALLATION.

DRIVER CABINET	# OF MODULES	# OF DRIVERS	L	w	н	WEIGHT	AC CURRENT - TYPE E (120VAC / 277VAC)	AC CURRENT - TYPE C (120VAC / 277VAC)
TYPE E/C-001	4	1	0'-11 1/2"	1' - 3 <u>1</u> "	5"	7 lbs.	0.95A / 0.4A	1.2A / 0.50A
TYPE E/C-002	1	2	0'-11 1/2"	1' - 3 <u>1</u> "	5"	15 lbs.	1.9A / 0.8A	2.4A / 1.7A
TYPE E/C-003	2	3	1' - 10 9 "	1' - 3 <u>1</u> "	5"	22 lbs.	2.95A / 1.2A	3.6A / 2.9A
TYPE E/C-004	2	4	1' - 10 <u>9</u> "	1' - 3 <u>1</u> "	5"	30 lbs.	3.8A / 1.6A	4.8A / 4.1A
TYPE E/C-005	3	5	2' - 9 <u>11</u> "	1' - 3 <u>1</u> "	5"	37 lbs.	4.75A / 2A	6.0A / 5.3A
TYPE E/C-006	3	6	2' - 9 <u>11</u> "	1' - 3 <u>1</u> "	5"	45 lbs.	5.7A / 2.4A	7.2A / 6.5A
TYPE E/C-007	4	7	3' - 8 13 "	1' - 3 <u>1</u> "	5"	52 lbs.	6.65A / 2.8A	8.4A / 7.7A
TYPE E/C-008	4	8	3' - 8 13/16	1' - 3 <u>1</u> "	5"	60 lbs.	7.6A / 3.2A	9.6A / 8.9A
TYPE E/C-009	F	9	4' - 7 15'''	1' - 3 <u>1</u> "	5"	67 lbs.	8.55A / 3.6A	10.8A / 10.1A
TYPE E/C-010	5	10	4' - 7 15/16	1' - 3 <u>1</u> "	5"	75 lbs.	9.5A / 4A	12.0A / 11.3A
TYPE E/C-011	6	11	5' - 7 <u>1</u> "	1' - 3 <u>1</u> "	5"	82 lbs.	10.45A / 4.4A	13.2A / 12.5A
TYPE E/C-012	0	12	5' - 7 <u>1</u> "	1' - 3 <u>1</u> "	5"	90 lbs.	11.4A / 4.8A	14.4A / 13.7A

DRIVER CABINET	# OF MODULES	# OF DRIVERS	L	w	н	WEIGHT	AC CURRENT - TYPE E (120VAC / 277VAC)
TYPE-CD-001	3	1	0'-11 1/2"	1' - 3 1 "	5"	20 lbs.	7A / 2.9A
TYPE-CD-021	4	3	1' - 10 <u>9</u> "	1' - 3 <u>1</u> "	5"	35 lbs.	9.4A / 3.9A
TYPE-CD-041	5	5	2' - 9 <u>11</u> "	1' - 3 <u>1</u> "	5"	50 lbs.	11.8A /4.9A
TYPE-CD-002	6	2	1' - 10 <u>9</u> "	1' - 3 <u>1</u> "	5"	40 lbs.	14.0A / 5.8A
TYPE-CD-022	7	4	2' - 9 <u>11</u> "	1' - 3 <u>1</u> "	5"	55 lbs.	- / 6.8A
TYPE-CD-042	8	6	3' - 8 13 "	1' - 3 <u>1</u> "	5"	70 lbs.	- / 7.8A

- TYPE C & CD OFFERS 100 TO 10% DIMMING •
- TYPE E OFFERS 100 TO 1% DIMMING
- TYPE CD OFFERS OVER 40% SPACE SAVING FOR CABINET INSTALLATION
- TYPE C ALLOWS FOR RECESSED TYPE IC INSTALLAT TYPE E & CD ALLOWS FOR SURFACE, WALL OR CEIL MOUNT INSTALLATION. PASSIVE VENTILATION OF CABINET IS REQUIRED THROUGH OUTER BOX LOUVE

REMOTE DRIVER CABINETS REQUIRE SINGLE POINT HIGH VOLTAGE (120-277v~) CONNECTION (277V~ RECOMMENDED).

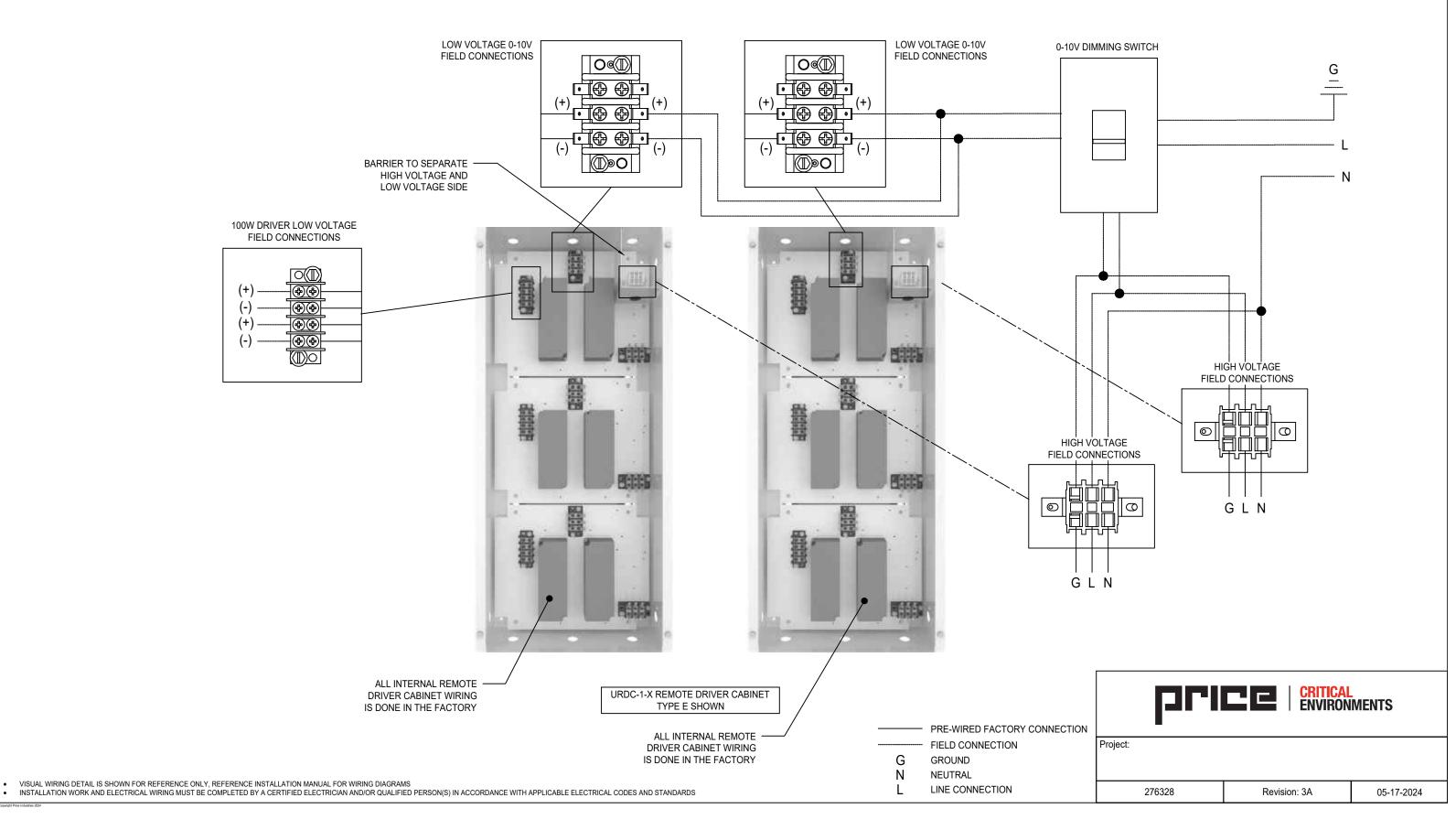
0-10V DIMMING SWITCH SHIPPED LOOSE. THE TOTAL LENGTH FOR 0-10V CONTROL SIGNAL WIRING FOR THIS CONTROL

8A AND 16A 0-10V DIMMING SWITCHES AVAILABLE. DIMMING ZONES AND CONTROL ARE COMPLETELY CUSTOMIZABLE.

LED DRIVER TYPE E OFFERS CONTINUOUS, FLICKER-FREE DIMMING FROM 100% TO 1% WITH 0-10 VOLTAGE DIMMER

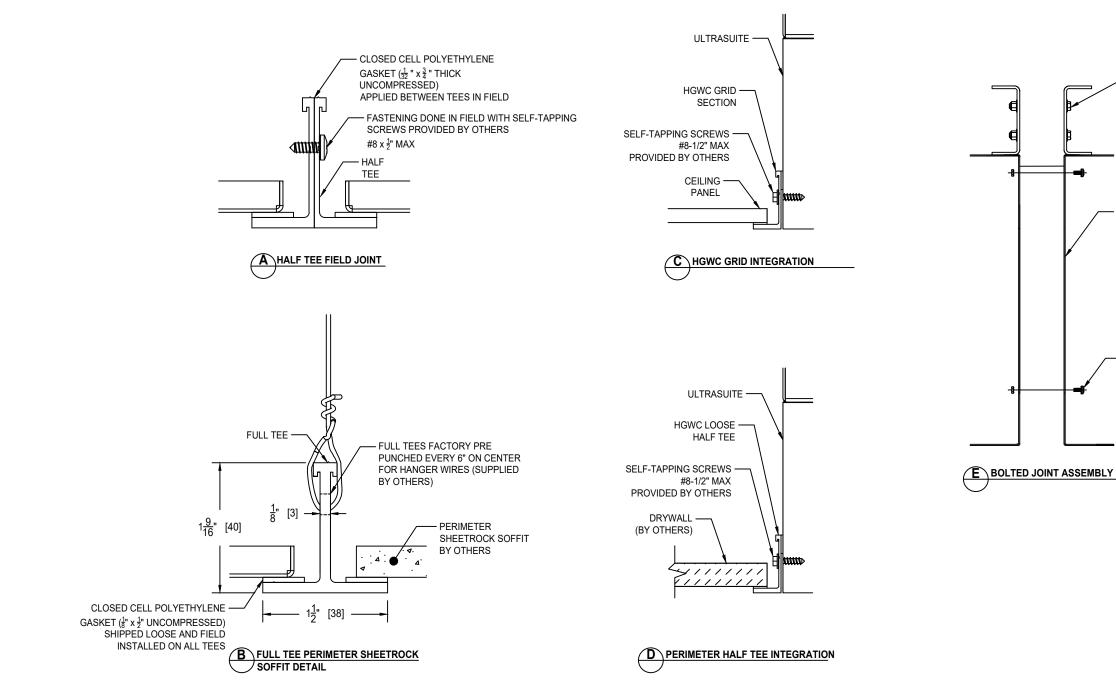
DIMMER SHIPPED LOOSE. OPTIONAL SOLID STATE RELAY WITH 4-32VDC RELAY SHUT OFF SIGNAL AND 0-10VDC

URDC DRIVER CABINETS CAN BE WALL MOUNTED, TYPICALLY IN AN ADJACENT EQUIPMENT ROOM, OR INSTALLED


ULTRASUITE MODULES COME WITH FACTORY WIRED AND INSTALLED TOP MOUNTED LOW VOLTAGE TERMINAL BLOCK

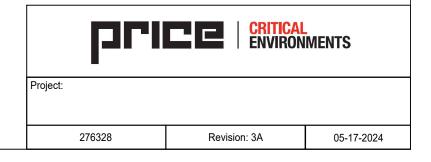
INCOMING HIGH VOLTAGE POWER AND LOW VOLTAGE CONNECTION BETWEEN ULTRASUITE MODULES AND REMOTE

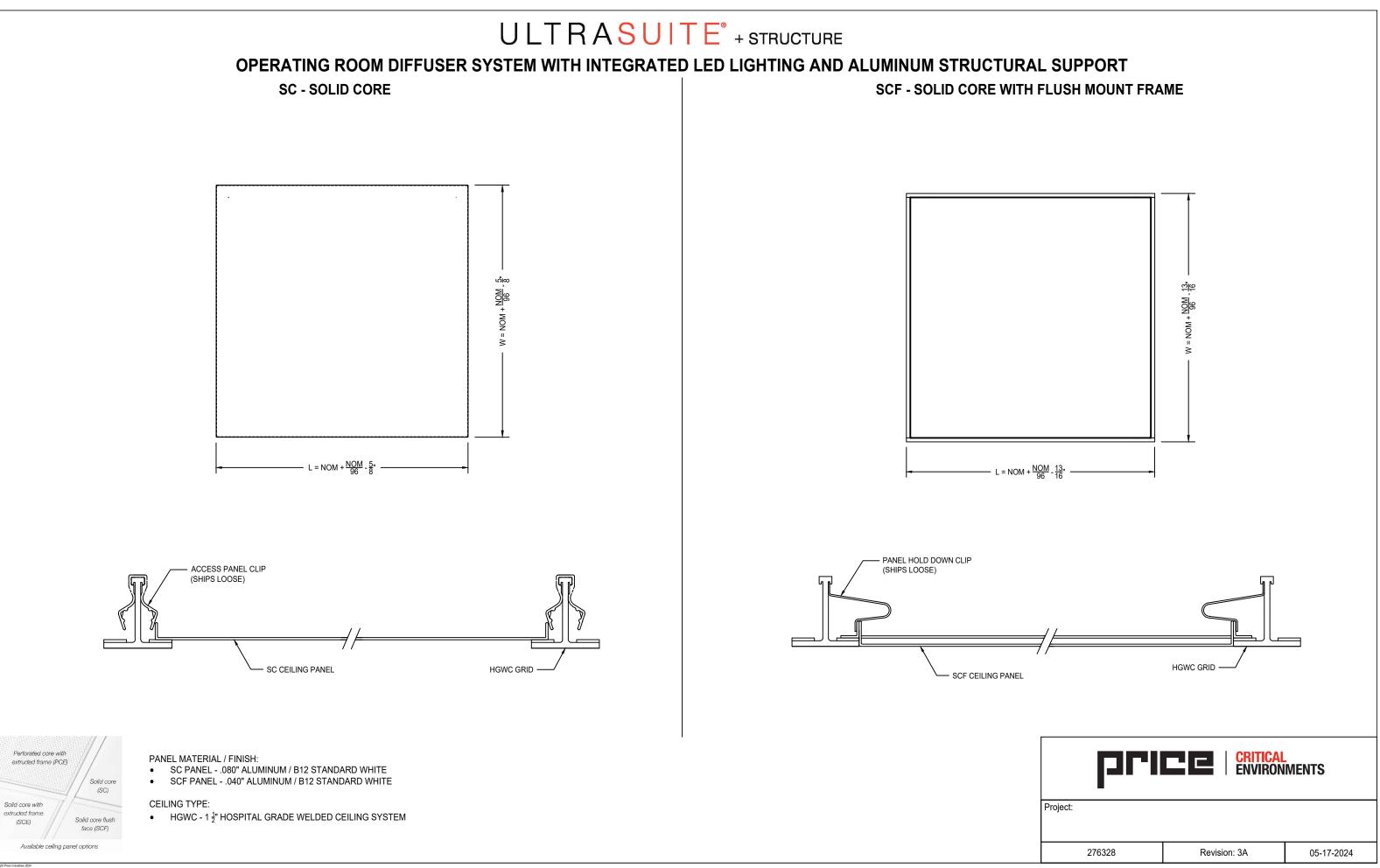
MAX DISTANCE BETWEEN ULTRASUITE MODULE AND REMOTE DRIVER CABINET IS DEPENDANT ON WIRE GAUGE TO


rion Ing	ргі	CRITICAL ENVIRON	MENTS
ERS	Project:		
	276328	Revision: 3A	05-17-2024

OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT • URDC ULTRA REMOTE DRIVER CABINETS - WIRING FOR SINGLE DIMMING ZONE (100 TO 1% DIMMING)

ULTRASUITE[®] + STRUCTURE **OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT**

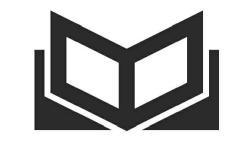

HGWC INTEGRATION DETAILS



ULTRASUITE STRUCTURAL CONNECTIONS FASTENED TOGETHER BY PRICE WITH $\frac{3}{8}$ "-16 HARDWARE

OPENING CUTOUT FOR AIR TO PASS BETWEEN PLENUMS


ULTRASUITE CONNECTIONS FASTENED TOGETHER BY PRICE WITH ¹/₄"-20 HARDWARE


OPERATING ROOM DIFFUSER SYSTEM WITH INTEGRATED LED LIGHTING AND ALUMINUM STRUCTURAL SUPPORT

SUPPORTING CONTENT

MANUALS

ULTRASUITE MANUAL FTR ROOM-SIDE REPLACEABLE FILTER (RSR) QUICK START GUIDE URDC ULTRA DRIVER CABINET MANUAL UCA ULTRA COMPONENTS AND ACCESSORIES MANUAL HGWC HOSPITAL GRADE WELDED CEILING SYSTEM MANUAL

BROCHURES

USA ULTRASUITE BROCHURE USA ULTRASUITE OPERATING ROOM HVAC DESIGN GUIDE USA ULTRASUITE PROJECT LIST USA ULTRASUITE CASE STUDY LIBRARY

CATALOGUE / PERFORMANCE

USA ULTRASUITE CATALOGUE USA ULTRASUITE PERFORMANCE USA ULTRASUITE PERFORMANCE (METRIC)

SUBMITTALS

VIDEOS

USA ULTRASUITE USA ULTRASUITE USA ULTRASUITE USA ULTRASUITE HEPA FILTER REP USA ULTRASUITE

FOR MORE INFOR PRICEINDUSTRIES

REVIT FILES USASA TRADITIONAL OR REVIT FILE

SPECIFICATIONS

USA ULTRASUITE SPECIFICATIONS

UCA ULTRA COMPONENTS AND ACCESSORIES SUBMITTAL FTR REPLACEMENT FILTER SUBMITTAL HGWC HOSPITAL GRADE WELDED CEILING SYSTEM SUBMITTAL

F	Project:
	CRITICAL ENVIRONMENTS
MATIC S.COM	DN ON PRICE ULTRASUITE SYSTEMS, VISIT
SEISM	/IC TESTING
LACE	MENT (USA AND UFFU) VIDEO
IN BA	YLOR SCOTT & WHITE MEDICAL CENTER TESTIMONIAL
SMOK	E TEST VIDEO
INSTA	LLATION TIME LAPSE VIDEO
LAUN	CH VIDEO

276328

ULTRASUITE Project #276328

STRUCTURAL ANALYSIS AND DESIGN

REPORT 2024002-AR01

Project Address: 20 Crestridge Drive, Suwannee, GA 30024.

Prepared By: Peter Lacoursiere, P.Eng. | F.A.Roberts & Associates Ltd.

2024002-AR01

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	2
1.1.	Project Overview	2
1.2.	Design Requirements	
1.3.	Analysis and Results	
2.0	PROJECT DESCRIPTION	3
3.0	REFERENCE DOCUMENTS	
4.0	STRUCTURAL DESIGN REQUIREMENTS	
4.1.	Design Overview	
4.2.	Design Loading	7
5.0	FRAME FEA ANALYSIS	9
5.1.	Finite Element Modeling	9
5.2.	Finite Element Results1	
6.0	SUPPLEMENTARY CALCULATIONS1	
6.1.	Hangers1	1
6.2.	Cross Beam Bolted Connections1	2
6.3.	Brace Bolted Connections1	2
6.4.	Beam Lateral-Torsional Buckling1	3
6.5.	Cross Beam Lateral-Torsional Buckling1	3
APPEN	NDIX A Boom Mount Live Load Cases1	7
APPEN	NDIX B Hanger Reactions2	6

1.0 EXECUTIVE SUMMARY

1.1. PROJECT OVERVIEW

Ultrasuite project #276328 consists of a suspended aluminum frame and steel boom mounting structures designed to support an integrated lighting and ventilation system along with equipment booms by Stryker. The frame structural design is described on drawings 276328 Rev. 3_ Sheets 1-6 and is designed for installation in an operating room at 20 Crestridge Drive, Suwannee, GA 30024.

1.2. DESIGN REQUIREMENTS

This report presents analysis results verifying compliance with

- Georgia Building Code, based on the 2018 International Building Code (IBC) with Georgia Amendments
- ASCE 07-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures
- ANSI/AISC 360-16 Specification for Structural Steel Buildings
- Aluminum Design Manual 2020

1.3. ANALYSIS AND RESULTS

The frame is analyzed for load combinations comprised of calculated seismic loading, frame selfweight and design boom loads and moments as defined by the boom equipment manufacturer. This report finds the following:

- The aluminum frame members see moderate load levels for this configuration and possess ample capacity as designed.
- The load effects due to the orientation of the moments on all (4) boom mounts was tested separately and is described in Appendix A; the (3) controlling load cases were used in load combinations.
- Anchor reactions at the top of the hangers and braces are provided in Appendix B; maximum hanger and brace forces are defined in section 6.1.

The analysis of the boom mounts is described in design report 2024002-AR02, which also includes information on physical lab testing of the single boom mount.

Lab testing was conducted at defined design loads for 3 orientations, as well as at 150% of load level in bending about the weak axis (My).

2024002-AR01

2.0 PROJECT DESCRIPTION

This report is prepared to support and verify the suspended Ultrasuite Structure configuration meets the applicable design requirements. The structural configuration is shown on Figure 1 below and is described on design drawings 276328 Rev. 3_ Sheets 1-6.

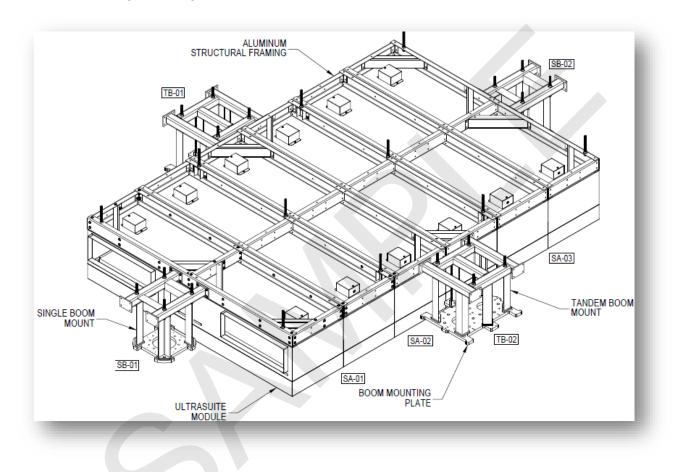


Figure 1. Ultrasuite Structure Isometric View

The Ultrasuite System consists of the following components and material grades:

- <u>USA Modules</u>: Formed 16 ga. boxes from CS Type B galvannealed sheet with integrated ventilation, lighting and air filters (design by others)
- <u>HGWC Sections</u>: ceiling panels (design by others, independently supported)
- <u>Aluminum Structural Frame</u>: Formed 5052-H32 aluminum alloy structural members, includes:
 - Primary beams: C5x2x3/16 formed channels
 - Cross_beams: C4.5x2x3/16 formed channels, bolted through top flange and web with bolted 3/16" angle clip

Finite Element Analysis Report

- o Corner Braces: C4x2x3/16 formed channels
- o Angle Clips: L1.75x1.75x3/16 formed angles, c/w (2) 7/16"Ø bolt holes
- Hanger Brackets: 3/16 formed brackets, c/w (4) 7/16"Ø bolt holes
- HSS Boom Mount: Steel weldment designed to support Stryker Plate specified loads, includes:
 - Top beams: HSS 3x3x1/4, ASTM A500 Gr. B or C
 - o Drop down legs: L3x3x1/4, ASTM A36 or equivalent
 - *Plates*: 3/8" plate, ASTM A36 or equivalent
- <u>Stryker Plate</u>: 1" Boom Mount Plate (design by others)
- Threaded Rod Hangers: 5/8"Ø ASTM F1554 Gr. 55 or equivalent
- Bracing: Required to limit sway

NOTE: Hangers and bracing, as well as their connections to the main building framing, are to be designed by a 3rd party engineer. References to these components and sample feasibility calculations are provided in this report but final brace and hanger design is the responsibility of others.

The current project #276328 is described on Price drawings 276328-1-6 Rev. 3_ and is a nominal 8'x12' array of Ultrasuite mechanical modules, as well as (2) tandem boom mounts and (2) single boom mounts.

This suspended frame will be installed at: 20 Crestridge Drive, Suwannee, GA 30024

Figure 2 shows the standard components of the *Ultrasuite* + *Structure* system, not including the boom mounted equipment that is suspended from the Stryker Mount Plate.

The structural frame and hanger/brace configuration is shown as a plan view in Figure 3.

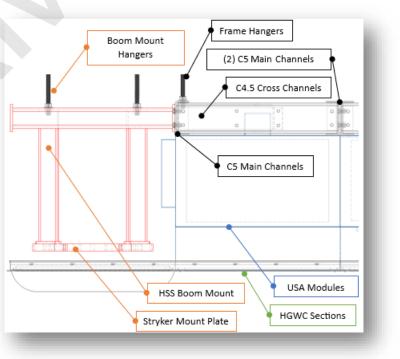


Figure 2. Ultrasuite Frame Components

UltraSuite Project #276328 Finite Element Analysis Report

2024002-AR01

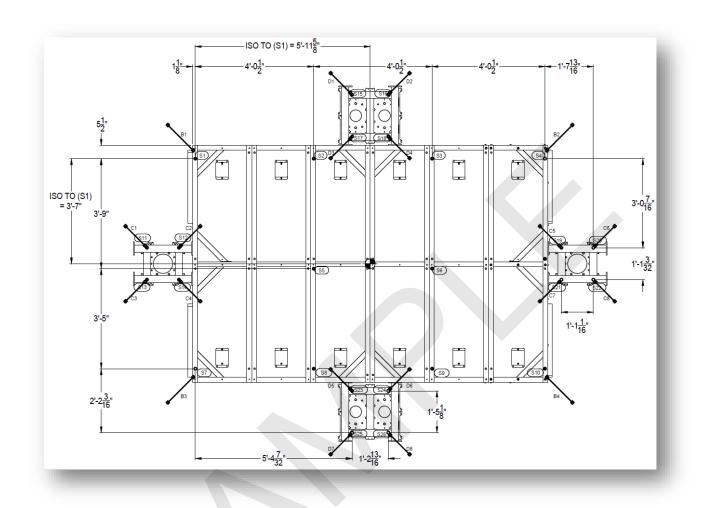


Figure 3. Ultrasuite Structure Layout

2024002-AR01

3.0 REFERENCE DOCUMENTS

Project #276328, designed for installation in Suwannee, Georgia, is analyzed for compliance with the requirements of the following building codes:

- Georgia Building Code, based on the 2018 International Building Code (IBC) with Georgia Amendments
- ASCE 07-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures
- ANSI/AISC 360-16 Specification for Structural Steel Buildings
- Aluminum Design Manual 2020

4.0 STRUCTURAL DESIGN REQUIREMENTS

4.1. DESIGN OVERVIEW

The structural design of the Ultrasuite project is focused on the design of the aluminum frame, where the HSS equipment boom mounts are previously designed and tested.

4.2. DESIGN LOADING

We have defined the following load cases:

- **4.2.1.** <u>Dead Load (D)</u>. The estimated weight of the system is 1,593 lbs, not including the HGWC and panels which are separately supported.
- **4.2.2.** <u>Seismic Load</u>. ATC Hazards by Location Tool, provides the following seismic parameters at the projects address (coordinates 34.0269541, -84.033122699):

Risk Category: IV I_p :1.5 Site class: D - Default S_s :0.197 S_1 :0.087 S_{ds} :0.21 Using a_p :1.0 R_p :1.5 (ASCE 7-16 Table 13.6-1 "Other mech. and elec. comp...")

Calculate the horizontal and vertical seismic accelerations per ASCE 07-16 as shown below:

Risk Category	$I_p := 1$.5 Site Cl	ass: D - Defa	ault (assumed)	
$S_S \! \coloneqq \! 0.197$	$S_1 \! \coloneqq \! 0.087$	$S_{DS} \coloneqq 0.21$	$S_{D1} := 0.$	139	
$h \coloneqq 120 \ ft$	$z \coloneqq 90 \ ft$ (NOT	E: h, z values	s chosen arbit	rarily)	
$a_p\!\coloneqq\!1.0$	$R_p = 1.5$ (ASCE 7-	-16 Table 13.	6-1 <i>"Other m</i>	nechanicalcomponents.	")
Lateral Shear:	$F_{ph} \coloneqq \frac{0.4 \cdot a_p \cdot S_{DS} \cdot \left(\frac{R_p}{I_p}\right)}{\left(\frac{R_p}{I_p}\right)}$.210 (<u>Wp</u>)	(ASCE 7-16 Eq. 13	8.3-1)
	$F_{ph_MAX} \coloneqq 1.6 \cdot S_{DS} \cdot F_{p\ MIN} \coloneqq 0.3 \cdot S_{DS} \cdot I_{J}$		(Wp) (Wp)	(ASCE 7-16 Eq. 13.3-2) (ASCE 7-16 Eq. 13.3-3)	
		r		in=0.210 Wp	
<u>Vertical Shear</u> :	$F_{p_v} = 0.2 \cdot S_{DS} = 0.0$	42		(ASCE 7-16 cl.13.3.1.2)	

Use 0.042 Wp for concurrent vertical seismic loads

We define the following seismic basic load cases, acting on boom mount weights and modelled dead load weights <u>plus</u> the weight of HGWC and panels (120 lbs):

Load Case Eh-x: 0.210 lateral acceleration in the -x direction Load Case Ehy: 0.210 lateral acceleration in the +y direction Load Case Ev: 0.042 downwards vertical acceleration in the -z direction Load Case -Ev: 0.042 vertical acceleration in the +z direction

2024002-AR01

- **4.2.3.** <u>Live Load</u>. We define the live load on this structural system as the boom mount design equipment loads required by Stryker:
 - $\circ \quad \mbox{Single Boom Mount:} \qquad \mbox{P}_b \mbox{=} 1,100 \mbox{ lbf, } M_b \mbox{=} 5,650 \mbox{ ft*lbf}$
 - \circ Tandem Boom Mount: P_b=2,200 lbf, M_b=11,300 ft*lbf

The orientation of the design moment is not fixed and may vary at each of the (4) boom mounts in this configuration.

The combined effects of the boom mounts on the frame have been evaluated for various orientations and are compared in Appendix A. Three of these scenarios have been selected as controlling live load cases and are included in load combinations:

- o L_mx: All boom mount moments are applied in the +Mx direction
- L_my: All boom mount moments are applied in the +My direction
- L_m*: Single boom mounts in +Mx, tandem mounts in +My direction (L_m*4)

4.2.4. Load Combinations

The following ASD controlling load combinations per ASCE 07-16 structural code are used for our verification of the structural design:

LC 1: D LC 3a: D + L_mx LC 3b: D + L_my LC 3c: D + L_m* LC 8a: D + 0.7Ev + 0.7Ehy LC 8b: D + 0.7Ev + 0.7Eh-x LC 9a: D + 0.525Ev + 0.525Ehy + 0.75L_mx LC 9b: D + 0.525Ev + 0.525Eh-x + 0.75L_my LC 9c: D + 0.525Ev + 0.525Ehy + 0.75L_m* LC 10a: 0.6D - 0.7Ev + 0.7Ehy LC 10b: 0.6D - 0.7Ev + 0.7Eh-x

Additionally, we define load combinations with overstrength factors as follows:

- LC 8'a (w/ overstrength): D + 0.7Ev + 2.0*0.7Ehy
- **LC 8'b** (w/ overstrength): D + 0.7Ev + 2.0*0.7Eh-x
- **LC 9'a** (w/ overstrength): D + 0.525Ev + 2.0*0.525Ehy + 0.75L_mx
- LC 9'b (w/ overstrength): D + 0.525Ev + 2.0*0.525Eh-x + 0.75L_my
- **LC 9'c** (w/ overstrength): D + 0.525Ev + 2.0*0.525Ehy + 0.75L_m*
- LC 10'a (w/ overstrength): 0.6D 0.7Ev + 2.0*0.7Ehy
- LC 10'b (w/ overstrength): 0.6D 0.7Ev + 2.0*0.7Eh-x

Finite Element Analysis Report

2024002-AR01

5.0 FRAME FEA ANALYSIS

5.1. FINITE ELEMENT MODELING

5.1.1. Modeling

The cold formed aluminum suspended structural frame is modelled as a wireframe (beam) model based on design drawings.

5.1.2. Analysis Type

The analyses were performed using a static stress approach with linear-elastic material models using Autodesk Simulation Mechanical 2018 with material properties for 5052-H32 aluminum alloys or mild carbon steel for the HSS boom mounts. Equipment boom mounting plates and the USA mechanical boxes were modelled with plate meshes.

5.1.3. Loads and Boundary Conditions

The hangers and braces are modelled with pinned constraints at the nominal anchorage point, approximately 24" above the structural frame.

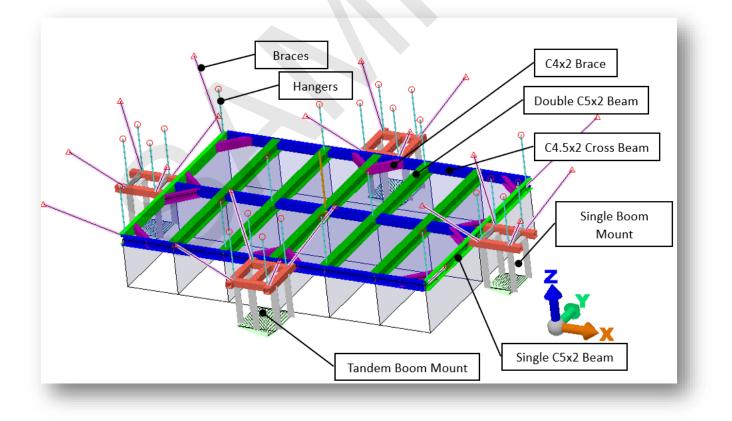


Figure 4. Ultrasuite wireframe FEA model

2024002-AR01

5.2. FINITE ELEMENT RESULTS

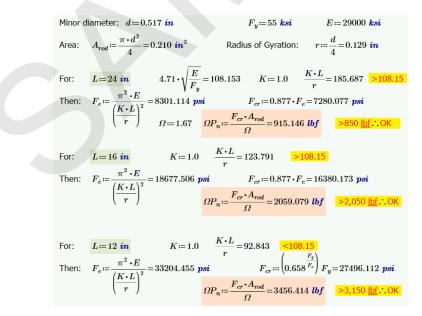
The defined ASD load combinations result in the following member stresses.

	PEAK COMBINED STRESS (von Mises) psi							
ASD Load Comb.	C5x2x3/16 Main Beam	C4.5x2x3/16 Cross Beam	C4x2x3/16 Brace	HSS 3x3x1/4 Boom Mount	*L3x3x1/4			
LC1	69	56	23	90	98			
LC3a	1,829	2,194	448	4,631	6,675			
LC3b	1,494	6,067	880	6,259	11,473			
LC3c	2,891	6,668	1,114	6,279	11,414			
LC8a	249	221	129	341	1,383			
LC8b	229	325	80	424	1,414			
LC9a	1,495	1,705	366	3,685	6,019			
LC9b	1,024	4,625	636	4,943	9,640			
LC9c	2,292	4,875	802	4,932	9,573			
LC10a	241	211	125	321	1,306			
LC10b	193	318	75	397	1,336			
Max. Stress	2,891	6,668	1,114	6,279	11,473			
Allowable Strength (Fy/Ω for Ω=1.67)	13,800	13,800	13,800	27,600	21,600			
Material Grade	5052-H32	5052-H32	5052-H32	ASTM A500 Gr. B	ASTM A36			
Yield Strength	23,000	23,000	23,000	46,000	36,000			

Stresses in aluminum structural members consist primarily of bending stresses, with minimal axial stresses induced by hanger braces.

The hanger and brace reactions for ASD load cases with overstrength factors can be found in Appendix B.

2024002-AR01


6.0 SUPPLEMENTARY CALCULATIONS

6.1. HANGERS AND BRACES

The anchorage to the building structure and design of the suspension components are to be designed by others. In order to verify the design of the suspended frame, a nominal design for braces and hangers was evaluated and provides a basis for the minimum level of support required. Hanger and brace reactions found in Appendix B are summarized below:

MAXIMUM AXIAL FORCES [LBF]					
HANGERS	TENSION	COMPRESSION			
S1,S4,S5,S6,S7,S10	450	300			
S2,S3,S8,S9	1,100	850			
S11-S14	2,550	2,050			
S15-S18	4,150	3,150			
S19-S22	2,550	2,050			
S23-S26	4,150	3,150			
BRACES	TENSION	COMPRESSION			
B1-B4	400	400			
C1-C8	350	250			
D1-D8	600	400			

For 5/8" grade 55 threaded rods, verify allowable compressive forces for lengths of 24", 16" and 12".

Then, hangers S1-S10 may have unbraced lengths of up to $L=24^{\circ}$, and all other hangers may have unbraced lengths of up to $L=12^{\circ}$ or 16^{\circ}. If the installation hanger length exceed this value, the threaded rods must be suitable stiffened to achieve the design compressive capacity.

Finite Element Analysis Report

2024002-AR01

6.2. CROSS BEAM BOLTED CONNECTIONS

The cross beam bolted connection consists of (3) 3/8" bolts – (2) bolts connecting the cross beam and main beams via an angle corner bracket and (1) bolt through the top flanges. The peak reaction (LC3c) in the FEA model is as follows.

CROSS BEAM CROSS BEAM 3/8"-I6 BOLTING HARDWARE (TYP)

Check the 3-bolt connection for shear and bending. The bending moment will cause the top flange bolt to engage in shear, and pivot from the lower bolt. The distance between these bolts is 3.25in. Then, we can calculate the peak bolt shear as:

By observation, the 3/8-16 grade 5 bolts have ample capacity for calculated loads. Check the bearing shear strength in the connected plies of 3/16" thick 5052-H32 aluminum per Aluminum Design Manual section J3.7:

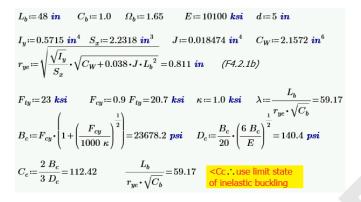
6.3. BRACE BOLTED CONNECTIONS

Similar to section 6.2, the brace bolted connection consists of (2) 3/8" bolts connecting the brace to the cross beam and main beams via a bent flange and a bolt through the top flanges (at cross brace only). The peak reaction (LC3c) in the FEA model is as follows.

T= 74.1 lbf Vz= 39.7 lbf Vy= 1.0 lbf Mz= 1.9 lbf*in My= 405.1 lbf*in

Then, we can calculate the peak bolt shear as:

$$P \coloneqq 74.1 \ lbf \qquad V_z \coloneqq 39.7 \ lbf \qquad V_y \coloneqq 1.0 \ lbf \qquad M_y \coloneqq 405.1 \ lbf \cdot in \qquad M_z \coloneqq 1.9 \ lbf \cdot in \\ x_b \coloneqq 2.0 \ in \qquad n \coloneqq 2 \qquad V_{boll} \coloneqq \frac{\sqrt{P^2 + V_z^2}}{n} + \frac{M_y}{x_b} = 244.6 \ lbf$$


Finite Element Analysis Report

2024002-AR01

6.4. BEAM LATERAL-TORSIONAL BUCKLING

The C5x2 primary beams are laterally braced at max 4 ft o/c, and as open structural shapes are required to be checked for lateral torsional buckling in flexure per the *Aluminum Design Manual* section F4.2.1.

Then, since we are lower than the slenderness limit S2, use the limit state of inelastic buckling:

$$\begin{split} M_{np} &\coloneqq 1.5 \cdot S_c \cdot F_{cy} = 69297.4 \ \textit{lbf} \cdot \textit{in} \\ M_{nmb} &\coloneqq M_{np} \cdot \left(1 - \frac{\lambda}{C_c}\right) + \frac{\pi^2 \cdot E \cdot \lambda \cdot S_c}{C_c^{-3}} = 42089.6 \ \textit{lbf} \cdot \textit{in} \\ \\ M_{nmb\Omega} &\coloneqq \frac{M_{nmb}}{\Omega} = 21584.4 \ \textit{lbf} \cdot \textit{in} \end{split}$$

From the FEA model, the C5x2 beams see a peak bending moment of **3,112 lbf*in** for load case LC3c, well within the allowable capacity.

6.5. CROSS BEAM LATERAL-TORSIONAL BUCKLING

The C4.5x2 cross beams are unbraced and span a max of 2 ft o/c, and are also required to be checked for lateral torsional buckling in flexure per the *Aluminum Design Manual* section F4.2.1. Then:

$$\begin{split} & L_{b} := 24 \ \textbf{in} \qquad C_{b} := 1.0 \qquad \Omega_{b} := 1.65 \qquad E := 10100 \ \textbf{ksi} \qquad d := 4.5 \ \textbf{in} \\ & I_{y} := 0.5522 \ \textbf{in}^{4} \quad S_{x} := 1.9263 \ \textbf{in}^{3} \qquad J := 0.017366 \ \textbf{in}^{4} \quad C_{W} := 1.6549 \ \textbf{in}^{6} \\ & r_{ye} := \sqrt{\frac{\sqrt{I_{y}}}{S_{x}}} \cdot \sqrt{C_{W} + 0.038 \cdot J \cdot L_{b}^{2}} = 0.742 \ \textbf{in} \qquad (F4.2.1b) \end{split}$$

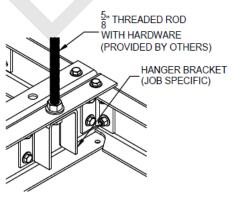
$$F_{ty} := 23 \ \textbf{ksi} \qquad F_{cy} := 0.9 \ F_{ty} = 20.7 \ \textbf{ksi} \qquad \kappa := 1.0 \ \textbf{ksi} \qquad \lambda := \frac{L_{b}}{r_{ye} \cdot \sqrt{C_{b}}} = 32.35 \\ & B_{c} := F_{cy} \cdot \left(1 + \left(\frac{F_{cy}}{1000 \ \kappa}\right)^{\frac{1}{2}}\right) = 23678.2 \ \textbf{psi} \qquad D_{c} := \frac{B_{c}}{20} \cdot \left(\frac{6 \ B_{c}}{E}\right)^{\frac{1}{2}} = 140.4 \ \textbf{psi} \\ & C_{c} := \frac{2 \ B_{c}}{3 \ D_{c}} = 112.42 \qquad \frac{L_{b}}{r_{ye} \cdot \sqrt{C_{b}}} = 32.35 \\ & \leq C_{c} : \cdot . \text{use limit state} \\ & \text{of inelastic buckling} \end{split}$$

Impung Section 2 and 2017 Days 2 Solutions Doc 1 (20) Full Section Properties Head Section Properties Doc 1 (20) In 4.3423 int% pro 1.7247 in Tary 0.00000 int% In 4.3423 int% pro 1.7247 in Tary 0.0000 int% In(1) 1.3428 int% pro 0.0000 int% 0.0000 int% In(2) 1.3428 int% pro 0.0000 int% 0.0000 int% In(2) 1.3428 int% pro 0.0000 int% 0.0000 int% In(2) 0.4342 int% pro 0.0000 int% 0.0000 int% In(2) 0.4342 int% pro 0.4300 int% 0.0000 int% In(2) 0.4342 int% pro 0.4300 int% 0.0000 int% In(2) 0.4342 int% pro 0.4342 int% pro 0.0000 int% In(2) 0.4342 int% pro 0.4342 int% pro 0.0000 int% In(2) 0.4342 int% pro 0.4342 int% pro 0.0000 int% In(2) 0.4342 int% pro 0.4342 int% pro 0.0000 int% In(2) 0.4342 int% pro 0.4342 int% pro 0.4342 int% pro <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>									
Image: Constraint of the set of	-\$-			19 23111 PM				100	
Y I 32(t) 1.523 in73 y(t) 2.260 in s 0.000 deg Sa(t) 1.523 in73 y(t) 2.250 in s 0.000 deg Ty 0.552 in7 y(t) 2.260 in s 0.000 deg Ty 0.552 in7 y(t) 0.260 in s 0.000 deg Ty 0.552 in7 y(t) 0.260 in s 0.000 deg DY(1) 0.966 in73 x(1) 0.565 in To 0.000 deg DY(1) 0.966 in73 x(1) 0.565 in To 0.000 deg DY(1) 0.966 in73 x(1) 0.566 in To 0.000 deg Ti 4.342 in74 rin 1.7347 in rin 0.000 in 1.6484 in74 rin To 4.5654 in74 rin 1.7237 in 0.000 in 1.6484 in74 rin 0.017344 in74 rin To 4.5654 in74 re 1.7237 in 0.000 in 0.017344 in74 rin 0.017344 in74 rin		Area	1.4741 in*2	Wz.	0.0050118 k/	te Width	7.0407	in	
Y I 32(t) 1.523 in73 y(t) 2.260 in s 0.000 deg Sa(t) 1.523 in73 y(t) 2.250 in s 0.000 deg Ty 0.552 in7 y(t) 2.260 in s 0.000 deg Ty 0.552 in7 y(t) 0.260 in s 0.000 deg Ty 0.552 in7 y(t) 0.260 in s 0.000 deg DY(1) 0.966 in73 x(1) 0.565 in To 0.000 deg DY(1) 0.966 in73 x(1) 0.565 in To 0.000 deg DY(1) 0.966 in73 x(1) 0.566 in To 0.000 deg Ti 4.342 in74 rin 1.7347 in rin 0.000 in 1.6484 in74 rin To 4.5654 in74 rin 1.7237 in 0.000 in 1.6484 in74 rin 0.017344 in74 rin To 4.5654 in74 re 1.7237 in 0.000 in 0.017344 in74 rin 0.017344 in74 rin		T.s.	4.3342 in'4	18	1.7147 in	Inv	0.0000	in'4	
Bat(b) 1.5223 An73 y(b) 2.2550 An An Ty 0.552 Link 940205 4.0000 Lin No -1.1045 An Ty 0.552 Link 711 0.5655 Link 711 0.5000 Link No -1.1045 An Ty 0.582 Link 711 0.5655 Link 70 0.0000 Link 2.5522 Link Ty 0.582 Link 711 0.565 Link 70 0.0000 Link 2.5522 Link Ti 4.3323 Link 2.0000 Link 70 0.0000 Link 70 0.0000 Link Ti 4.3324 Link 2.0100 Link 70 0.0000 Link 70 0.0000 Link Ti 4.3424 Link 4.010 Link 1.010 Link 0.000 Link 70 0.0000 Link Ti 4.3454 Link 4.010 Link 1.010 Link 0.01104 Link 0.01104 Link 0.01104 Link 0.01104 Link 0.01104 Link 0.00110 Link 0.01104 Link	ф	3x(t)	1.9263 in*3	7(5)	2.2500 in		0.000	deg	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5x(b)	1.9263 in*3						
97(1) 0.9964 1n ⁻³ x(1) 0.565 1n To 0.0000 1n 97(1) 0.5351 1n ⁻³ x(1) 1.4435 n 3x 2.5842 1n 1 4.3542 1n ⁴ x(2) 1.000 1n 2.000 1n 10 0.000 1n 1 4.3542 1n ⁴ x(2) 1.010 1n 10 0.000 1n 10 10 10 1.010 1n 10 1.0434 1n ⁴ 1.020 1n 10 1.0434 1n ⁴ 1.020 1n 10 1.0434 1n ⁴ 1.020 1n 1.010 1n 10 1.0434 1n ⁴ 1.020 1n 1.020 1n 1.0434 1n ⁴ 1.020 1n 1.000 1n 1.000 1n 1.010 1n				Meight	4.5000 in	122.00	10.000		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TY	0.5522 in'4	27	0.6120 in		-1.1045	20	
		SY(L)	0.9006 10-3	#(1) #(2)	0.5505 in		0.0000	10	
11 4.3342 lin*4 r1 1.7147 in 12 0.6552 are r2 0.4210 in 15 4.6864 lin*4 s0 1.6207 lin 64 16 4.6864 lin*4 s0 1.6207 lin 64 1.6449 lin*6 16 4.6864 lin*4 s0 1.6207 lin 3 0.017464 lin*4		wy (E)	A. 4435 70 3	Width	2,0000 15				
12 0.4522 nr4 r2 0.4120 sn 20 4.8564 nr4 r0 1.8207 in Cv 1.6245 nr4 20 4.8564 nr4 r0 1.8207 in Cv 1.6245 nr4 20 4.8564 nr4 r0 2.1722 in J 0.017266 nr4		11	4.3342 18"4	z 1	1.7147 in			57.	
In 4.9655 in'4 pn 2.1723 in J 0.017366 in'4		12	0.5522 in*4	72	0.4120 in				
		Ic	4.0064 10"4	20	1.0207 in	CV.	1.4549	10.4	
6			6.9555 18'4	10	2.1723 sm	3	0.017366	18.4	
		4 C							
		-							1

-- 13 --

2024002-AR01

Then, for the limit state of inelastic buckling:


$$\begin{split} M_{np} &\coloneqq 1.5 \cdot S_c \cdot F_{cy} = 69297.4 \ \textit{lbf} \cdot \textit{in} \\ M_{nmb} &\coloneqq M_{np} \cdot \left(1 - \frac{\lambda}{C_c}\right) + \frac{\pi^2 \cdot E \cdot \lambda \cdot S_c}{C_c^{-3}} = 54420.8 \ \textit{lbf} \cdot \textit{in} \\ \\ M_{nmb\Omega} &\coloneqq \frac{M_{nmb}}{\Omega} = 27908.1 \ \textit{lbf} \cdot \textit{in} \end{split}$$

From the FEA model, the C4.5x2 cross beams see a peak bending moment of **8,325.6 lbf*in** for load case LC3b, well within the allowable capacity.

6.6. FLANGE BENDING AT HANGERS

The C5x2 primary beams are suspended with threaded rods with hanger positions denoted S1-S10. C4.5x2 cross beams located near hanger locations to brace the primary beams.

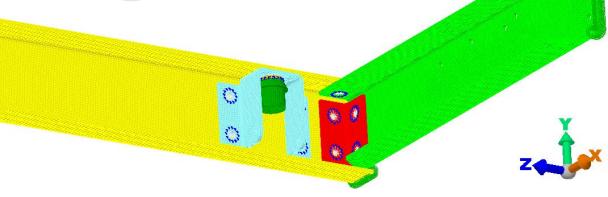
At hanger locations near boom mounts, the boom mount design moment induces higher hanger forces, and the hanger forces exceed the flange bending capacity of the cold formed beams. At these locations, formed reinforcing brackets are incorporated to connect the flange and web and reduce the flange bending stresses. The reinforcing brackets are placed within beam the upper flange, and are connected to the 5/8" hanger, and bolted to the beam web with (4) 3/8" bolts.

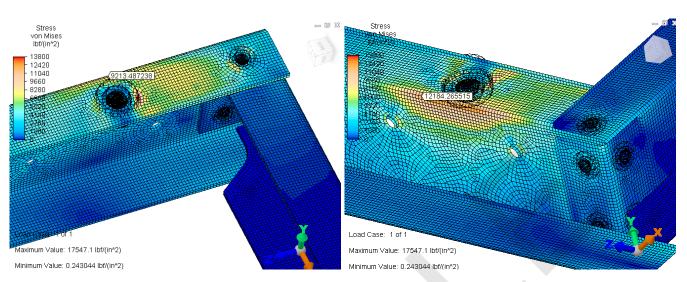
A solid model was created to reproduce and test (4) condition at the hanger locations:

HANGER BRACKET (ISO VIEW)

Model 1. C5x2 with cross-beam, without reinforcing bracket, 450lbf in tension
Model 2. C5x2 with cross-beam, without reinforcing bracket, 300lbf in compression
Model 3. C5x2 with cross-beam, with reinforcing bracket, 1,100 lbf in tension
Model 4. C5x2 with cross-beam, with reinforcing bracket, 850 lbf in compression

Figure 5 below shows the setup (Model 3):




Figure 5. Model 3 setup (C5x2 beam with reinforcement, 1,100 lbf tension)

UltraSuite Project #276328

Finite Element Analysis Report

2024002-AR01

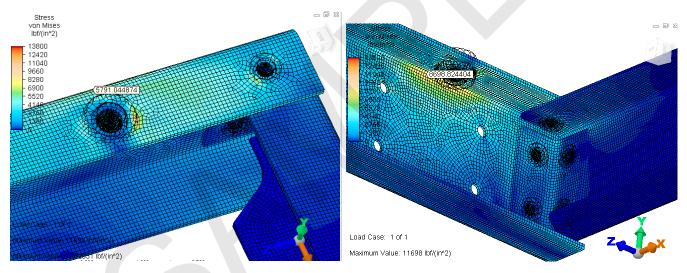


Figure 7. Model 2 FEA Results (C5x2 beam; no reinforcement; 300 lbf compression) von Mises stress

As can be seen in Figures 6 and 7, the flange bending von Mises stresses are less than the allowable stresses of 13,800 psi in the unreinforced condition, for hanger forces of +450lbf/-300 lbf.

UltraSuite Project #276328

Finite Element Analysis Report

2024002-AR01

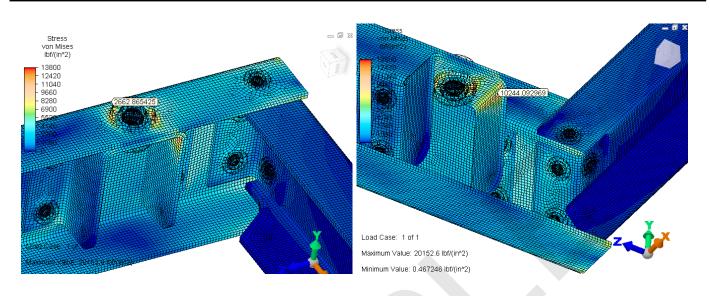


Figure 8. Model 3 FEA Results (C5x2 beam; with reinforcement; 1,100 lbf tension) von Mises stress

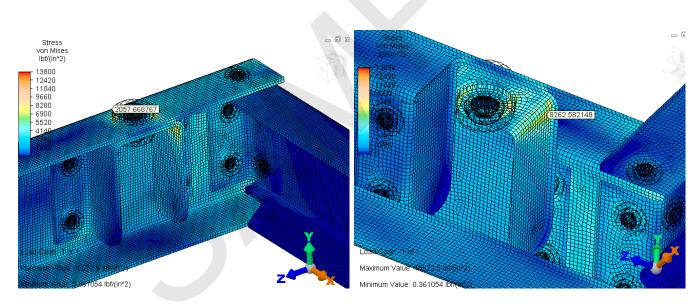


Figure 9. Model 4 FEA Results (C5x2 beam; no reinforcement; 850 lbf compression) von Mises stress

As can be seen in Figures 8 and 9, the von Mises stresses are lower than the allowable stresses of 13,800 psi in the unreinforced condition, for hanger forces of +1,100 lbf/-850 lbf.

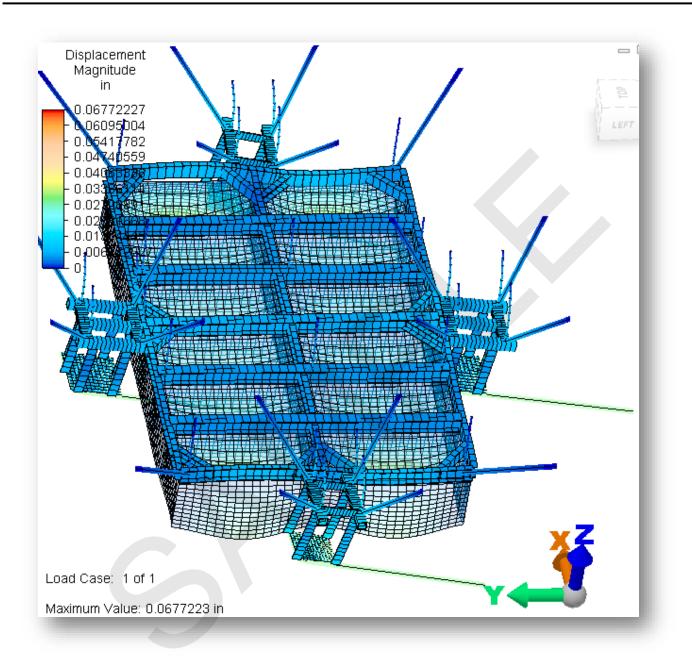
APPENDIX A | BOOM MOUNT LIVE LOAD CASES

This section compares the structural system effects of varying boom orientations on all 4 booms. The controlling 3 configurations were selected for use in the structural load combinations.

NOTES:

- Single Boom Mounts have a nodal mass of 1,100 lbf applied at the tip of a rigid lever arm.
- Tandem boom mounts have a nodal mass of 2,200 lbf applied at the tip of a rigid lever arm.
- The modeled rigid lever arms are 61.64 inches long to produce the design moment and are oriented to produce the moments as tabulated below.

Load Case	<u>Single</u> <u>Mnt.1</u>	<u>Single</u> <u>Mnt.2</u>	<u>Tandem</u> <u>Mnt.1</u>	<u>Tandem</u> <u>Mnt.2</u>	C4.5x2 Worst Stress [psi]	C5x2 Worst Stress [psi]	Displacement [in]
D+L_mx	Mx+	Mx+	Mx+	Mx+	1809	1351	0.034
D+L_my	My+	My+	My+	My+	4253	1198	0.038
D+L_m*1	Mx+	Mx-	My+	My-	4194	1346	0.038
D+L_m*2	My+	My-	Mx-	Mx+	1695	1053	0.029
D+L_m*3	My-	My+	Mx+	Mx-	1972	1184	0.027
D+L_m*4	Mx+	Mx+	My+	My+	4246	1382	0.036
D+L_m*5	Mx+	Mx+	Mx-	Mx-	1826	1372	0.029


Related combined stresses are recorded for the C4.5x2x3/16 cross beams and C5x2x3/16 primary beams (spanning the width of the frame). As can be seen, there is a minimal variation in stress levels beyond what is captured in the "D+Lmx" and "D+Lmy" load cases. The third controlling case (L_m*) will be L_m*4. Refer to Figures 11-17 for a graphic representation of these load cases.

The displacement values shown in the above table only includes the peak displacement for frame members and the boom mount.

The following figures show the combined stresses of these beam elements and a visualized model with an artificially high displacement factor to aid in visualization of the structural motion.

UltraSuite Project #276328 Finite Element Analysis Report

Figure 10. Ultrasuite Frame Displacement (DL+L_mx)

UltraSuite Project #276328 Finite Element Analysis Report

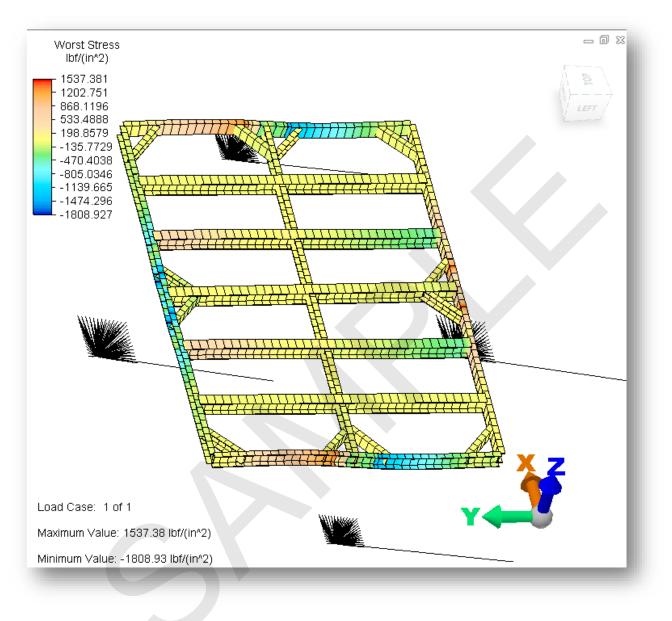
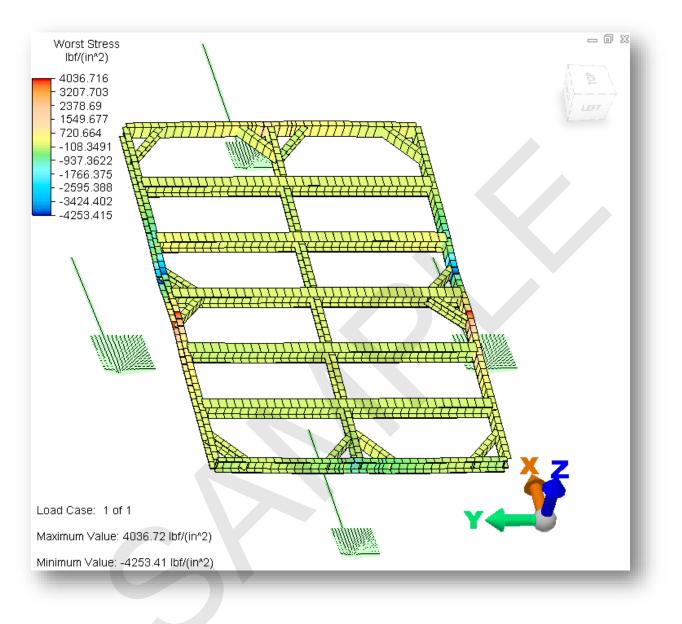
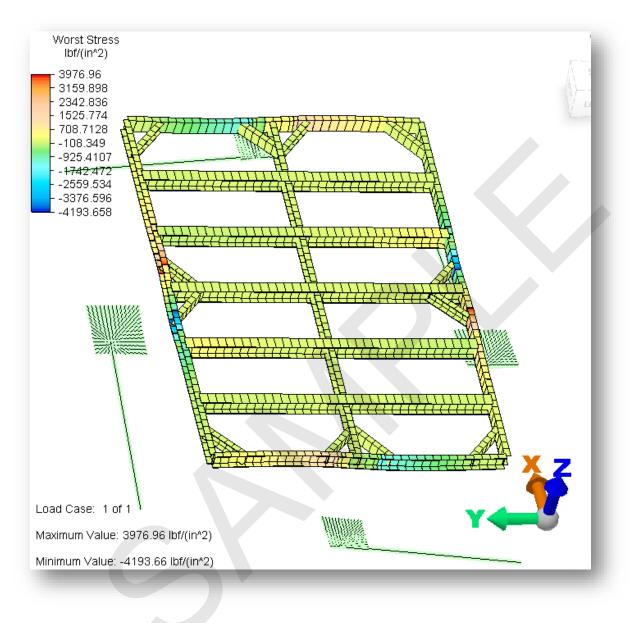
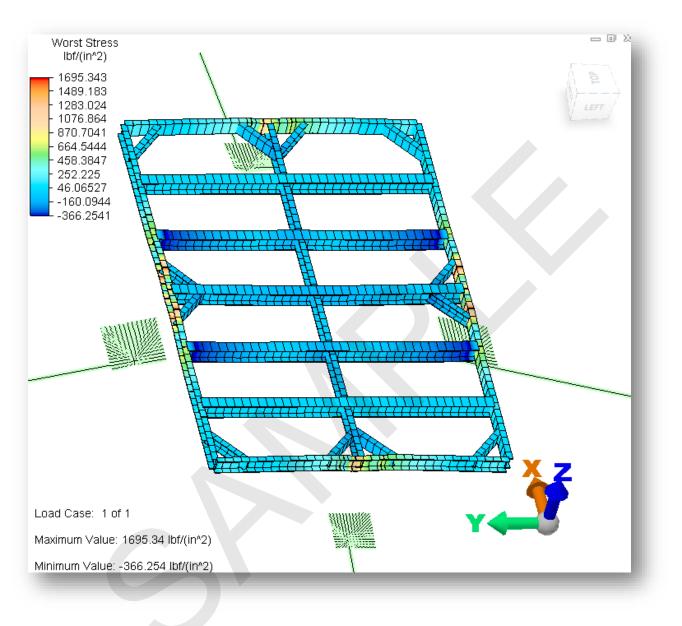


Figure 11. Ultrasuite Aluminum Frame Stresses (DL+L_mx)

UltraSuite Project #276328 Finite Element Analysis Report


Figure 12. Ultrasuite Aluminum Frame Stresses (DL+L_my)

UltraSuite Project #276328 Finite Element Analysis Report

Figure 13. Ultrasuite Aluminum Frame Stresses (DL+L_m*1)

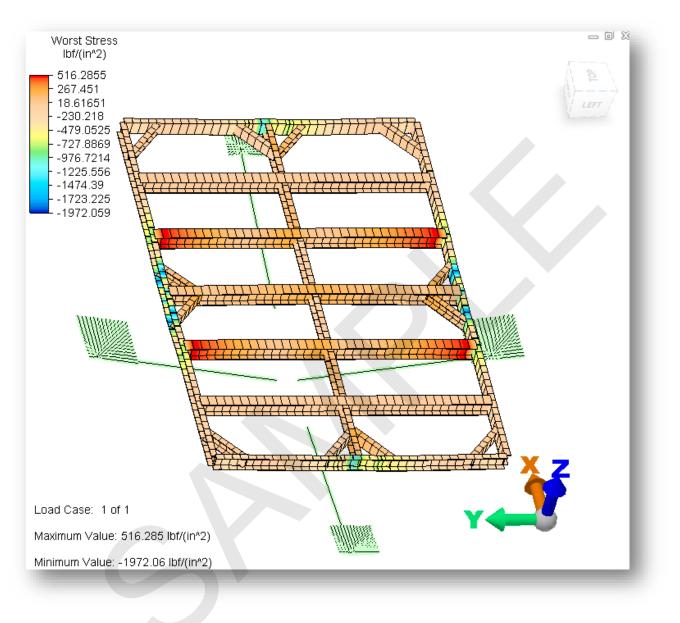
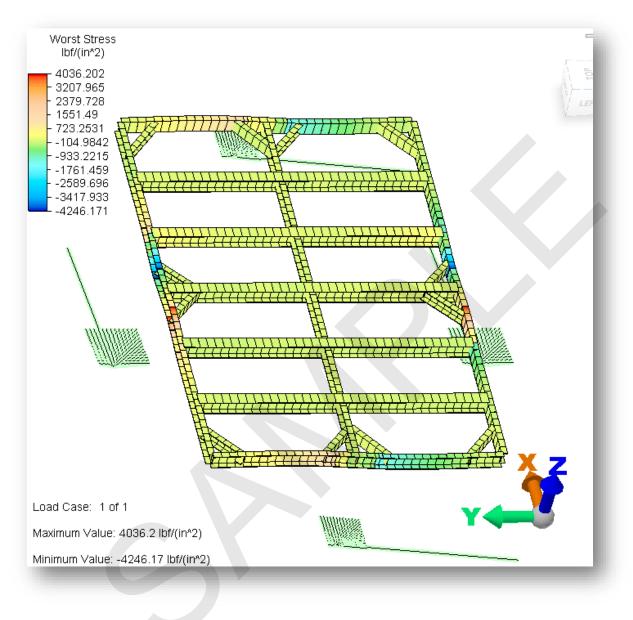
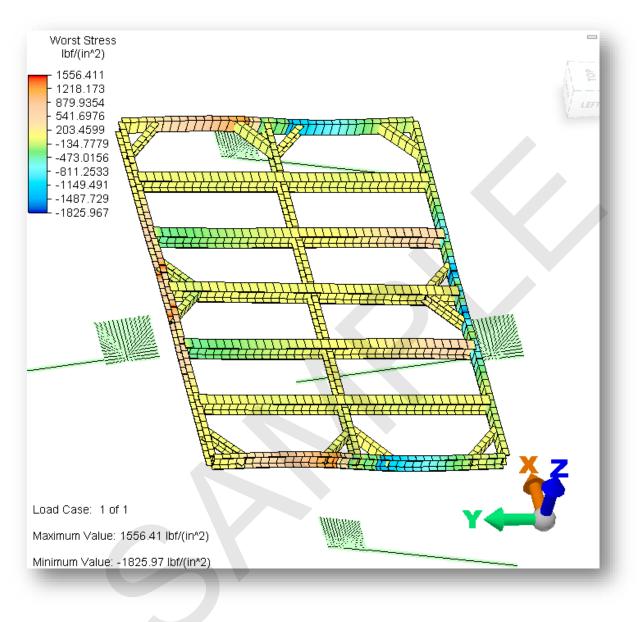

UltraSuite Project #276328 Finite Element Analysis Report

Figure 14. Ultrasuite Aluminum Frame Stresses (DL+L_m*2)


UltraSuite Project #276328 Finite Element Analysis Report

2024002-AR01


Figure 15. Ultrasuite Aluminum Frame Stresses (DL+L_m*3)

UltraSuite Project #276328 Finite Element Analysis Report

UltraSuite Project #276328 Finite Element Analysis Report

2024002-AR01

APPENDIX B | HANGER/BRACE REACTIONS

	HANGER REACTIONS (Axial Load*) lbf											
Load Comb.	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10		
LC1	51.2	79.6	79.6	51.2	118.4	118.4	51.3	72.5	72.5	51.3		
LC3a	-195.7	1,092.1	1,092.1	-195.7	158.9	158.9	337.8	-818.1	-818.1	337.8		
LC3b	312.0	-109.7	395.0	-169.7	354.3	-43.5	312.2	-131.2	397.9	-169.7		
LC3c	-280.0	-217.0	521.9	29.7	94.8	215.7	112.8	-242.1	489.4	422.6		
LC8'a	103.9	160.1	160.1	103.9	123.8	123.8	4.4	1.9	1.9	4.4		
LC8'b	153.4	66.5	103.0	-45.1	145.7	101.4	153.5	57.7	97.0	-45.0		
LC9'a	-94.4	899.4	899.4	-94.4	152.9	152.9	231.0	-648.4	-648.4	231.0		
LC9'b	323.5	-72.2	333.8	-186.7	315.8	-15.8	323.6	-91.4	334.9	-186.7		
LC9'c	-157.7	-82.5	471.7	74.6	104.7	195.5	62.2	-216.4	332.2	294.6		
LC10'a	77.6	118.0	118.0	77.6	66.1	66.1	-22.0	-36.8	-36.8	-22.0		
LC10'b	127.0	24.3	60.9	-71.4	88.0	43.7	127.1	19.0	58.3	-71.4		
Minimum	-280.0	-217.0	60.9	-195.7	66.1	-43.5	-22.0	-818.1	-818.1	-186.7		
Maximum	323.5	1,092.1	1,092.1	103.9	354.3	215.7	337.8	72.5	489.4	422.6		

*Hangers are modelled vertically with 24" length; +/- values indicate tension/compression respectively

		HANGER REACTIONS (Axial Load*) lbf											
Load Comb.	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20			
LC1	15.8	64.3	15.8	64.3	40.2	40.2	69.1	69.1	64.3	15.8			
LC3a	-1,891.3	-1,724.5	2,395.4	2,231.7	-3,103.2	-3,103.2	3,306.5	3,306.5	-1,724.5	-1,891.3			
LC3b	-2,036.8	2,050.4	-2,036.8	2,050.4	-2,959.9	3,967.2	-2,626.1	3,507.1	-1,542.9	2,540.7			
LC3c	-1,901.6	-1,704.0	2,342.8	2,211.4	-2,963.7	3,941.4	-2,606.7	3,511.1	-1,703.9	-1,838.9			
LC8'a	-145.7	-85.5	191.9	229.5	-220.9	-220.9	298.0	298.0	-85.5	-145.7			
LC8'b	-154.5	212.9	-154.5	212.9	-245.8	355.7	-184.5	349.1	-68.8	200.7			
LC9'a	-1,535.7	-1,389.6	1,932.5	1,813.7	-2,513.2	-2,513.2	2,668.8	2,668.8	-1,389.6	-1,535.7			
LC9'b	-1,651.4	1,665.3	-1,651.4	1,665.3	-2,424.4	3,222.1	-2,142.5	2,857.7	-1,240.9	2,048.2			
LC9'c	-1,543.3	-1,374.3	1,893.1	1,798.6	-2,408.6	2,770.3	-1,766.1	2,822.3	-1,374.2	-1,496.3			
LC10'a	-166.6	-126.7	170.9	188.3	-266.5	-266.5	243.9	243.9	-126.7	-166.6			
LC10'b	-175.5	171.7	-175.5	171.7	-291.4	310.2	-238.6	295.0	-110.0	179.8			
Minimum	-2,036.8	-1,724.5	-2,036.8	64.3	-3,103.2	-3,103.2	-2,626.1	69.1	-1,724.5	-1,891.3			
Maximum	15.8	2,050.4	2,395.4	2,231.7	40.2	3,967.2	3,306.5	3,511.1	64.3	2,540.7			

*Hangers are modelled vertically with 24" length; +/- values indicate tension/compression respectively

2024002-AR01

		HANGE	R REACTIO	NS (Axial L	oad*) lbf	
Load Comb.	S21	S22	S23	S24	S25	S26
LC1	64.3	15.8	69.3	69.3	40.1	40.1
LC3a	2,231.7	2,395.4	-2,425.9	-2,425.9	4,110.4	4,110.4
LC3b	-1,542.9	2,540.7	-2,625.4	3,507.1	-2,959.8	3,966.8
LC3c	2,211.5	2,405.5	-2,629.8	3,488.2	-2,934.4	3,970.9
LC8'a	229.5	191.9	-133.2	-133.2	330.8	330.8
LC8'b	-68.8	200.7	-184.3	349.3	-245.9	355.6
LC9'a	1,813.7	1,932.5	-1,954.0	-1,954.0	3,310.8	3,310.8
LC9'b	-1,240.9	2,048.2	-2,141.9	2,857.7	-2,424.3	3,221.8
LC9'c	1,798.7	1,940.1	-2,106.9	2,481.6	-1,972.8	3,206.2
LC10'a	188.3	170.9	-187.4	-187.4	285.2	285.2
LC10'b	-110.0	179.8	-238.5	295.1	-291.4	310.1
Minimum	-1,542.9	15.8	-2,629.8	-2,425.9	-2,959.8	40.1
Maximum	2,231.7	2,540.7	69.3	3,507.1	4,110.4	4,110.4

*Hangers are modelled vertically with 24" length; +/- values indicate tension/compression respectively

Logd		BRACE REACTIONS (Axial Load*) lbf											
Load Comb.	B1	B2	В3	В4	C1	C2	C3	C4	C5	C6			
LC1	7.5	7.5	7.4	7.4	8.7	16.6	8.7	16.5	16.6	8.7			
LC3a	267.2	267.2	-246.0	-246.0	15.7	40.5	146.4	121.8	40.5	15.7			
LC3b	386.3	-365.1	386.3	-365.1	-42.2	46.6	-42.3	46.5	115.9	204.3			
LC3c	345.9	-107.2	128.4	-324.7	51.8	-76.7	251.9	75.2	87.3	-89.8			
LC8'a	-114.1	-114.1	129.8	129.8	-177.5	-165.2	199.6	203.2	-165.2	-177.5			
LC8'b	-126.3	142.1	-126.4	142.1	-211.4	230.3	-211.4	230.3	-192.3	233.5			
LC9'a	111.1	111.1	-90.9	-90.9	-125.7	-101.8	255.2	235.5	-101.8	-125.7			
LC9'b	191.3	-170.9	191.2	-171.0	-194.6	199.4	-194.7	199.3	-65.6	324.1			
LC9'c	170.1	-169.7	190.0	-149.8	-98.6	-189.7	334.3	200.5	-66.7	-204.8			
LC10'a	-117.9	-117.9	126.0	126.0	-185.7	-176.8	191.4	191.7	-176.8	-185.7			
LC10'b	-130.2	138.3	-130.2	138.3	-219.7	218.8	-219.7	218.8	-203.8	225.3			
Minimum	-130.2	-365.1	-246.0	-365.1	-219.7	-189.7	-219.7	16.5	-203.8	-204.8			
Maximum	386.3	267.2	386.3	142.1	51.8	230.3	334.3	235.5	115.9	324.1			

*Braces are modelled at a 45 degree angle to a horizontal plane; brace forces will vary with the angle of installation; +/- values indicate tension/compression

2024002-AR01

Lead	BRACE REACTIONS (Axial Load*) lbf											
Load Comb.	C7	C8	D1	D2	D3	D4	D5	D6	D7	D8		
LC1	16.5	8.7	14.3	14.3	20.3	20.3	20.3	20.3	14.4	14.4		
LC3a	121.8	146.4	-60.7	-60.7	127.2	127.2	163.7	163.7	378.1	378.1		
LC3b	115.9	204.4	-37.9	355.2	-15.2	306.3	-15.3	306.3	-37.9	355.4		
LC3c	239.1	110.2	-40.4	402.2	-78.0	321.4	-30.3	369.1	-84.8	357.8		
LC8'a	203.2	199.6	-367.0	-367.0	392.1	392.1	-342.7	-342.7	405.1	405.1		
LC8'b	-192.3	233.5	-327.4	365.4	-307.7	357.1	-307.7	357.1	-327.4	365.5		
LC9'a	235.5	255.2	-328.0	-328.0	379.3	379.3	-144.4	-144.4	580.2	580.2		
LC9'b	-65.6	324.1	-281.1	533.3	-252.3	487.4	-252.4	487.4	-281.2	533.5		
LC9'c	323.5	228.0	-312.8	19.2	225.4	524.9	-289.9	9.6	233.0	565.0		
LC10'a	191.7	191.4	-382.1	-382.1	375.3	375.3	-359.6	-359.6	390.0	390.0		
LC10'b	-203.8	225.3	-342.5	350.4	-324.5	340.3	-324.6	340.3	-342.5	350.4		
Minimum	-203.8	8.7	-382.1	-382.1	-324.5	20.3	-359.6	-359.6	-342.5	14.4		
Maximum	323.5	324.1	14.3	533.3	392.1	524.9	163.7	487.4	580.2	580.2		

*Braces are modelled at a 45 degree angle to a horizontal plane; brace forces will vary with the angle of installation; +/- values indicate tension/compression